Remarkable near-infrared emission enhancement of Cr³⁺activated BaGe₄O₉: The role of lithium ion

Yuechao Tang,^a Jin Yang,^a Qinan Mao,^{*a} Yang Ding,^a Guojun Zheng,^b Lang Pei^a and

Jiasong Zhong*a

^{*a*} Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.

E-mail: maoqinan@hdu.edu.cn, jiasongzhong@hdu.edu.cn

^b Institute of Light+X Science and Technology, College of Information Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China.

Fig. S1 XRD patterns of BGO: xCr^{3+} (x=0.003125%~0.1%) phosphors.

Fig. S2 XRD patterns of BGO:xCr³⁺,1wt%Li⁺ (x=0.05%~1.6%) phosphors.

Fig. S3 XRD Rietveld refinements of BGO:0.8%Cr³⁺,yLi⁺ (y=0-2wt%) phosphors.

Fig. S4 SEM images of (a) BGO:Cr³⁺ and BGO:Cr³⁺,Li⁺ phosphors

Fig. S5 PL spectra of BGO:xCr³⁺,1wt%Li⁺ (x=0.05%-1.6%) phosphors.

Fig. S6 (a) PL spectra and (b) diffuse reflectance spectra of BGO:Cr³⁺, BGO:Cr³⁺,Li⁺, BGO:Cr³⁺,Na⁺ and BGO:Cr³⁺,K⁺.

Ion	Li ⁺ (CN=8)	Ba ²⁺ (CN=8)		Li+ (CN=6)	Ge ⁴⁺ (CN=6)		Li+ (CN=4)	Ge ⁴⁺ (CN=4)
Ionic radius (Å)	0.92	1.42		0.76	0.53		0.59	0.39
Ionic radius difference (%)	35%		43%		_	51%		

Table S1 Ionic radius differences between $\mathrm{Li^{+}}$ and host cations

The ionic radius difference (D_r) is calculated by the following equation

$$D_r = \left| \frac{R_s(\text{CN}) - R_d(\text{CN})}{R_s(\text{CN})} \right| \times 100\%$$

where R_s is the ionic radius of the cations possibly substituted by Li⁺, R_d is the ionic radius of Li⁺ and CN represents coordination number.