Chitosan/PVA Supported Silver Nanoparticles for Azo Dyes Removal: Fabrication, Characterization, and Assessment of Antioxidant Activity

Ismet Meydan^{1*}, Aysenur Aygun², Rima Nour Elhouda Tiri², Tugba Gur¹, Yılmaz Kocak³, Hamdullah Seckin¹, Fatih Sen^{1*}

¹Van Vocational School of Health Services, Van Yüzüncü Yıl University, Zeve Campus, 65080 Van, Turkiye

²Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000 Kutahya, Turkey

³*Physical Therapy and Rehabilitation, Faculty of Health Sciences, Van Yuzuncu Yil University,* 65080 Van, Turkey

*Corresponding Author: ismetmeydan@yyu.edu.tr, fatihsen1980@gmail.com

Support information

Chemicals

AgNO₃ (\geq 99), Chitosan (low molecular weight), Poly (Vinyl Alcohol) (PVA, \geq 99+%), Methylene blue, Methylene orange, Methylene red, safranin, crystal violet, and all other chemicals were supplied from Sigma Aldrich.

Analysis of AgNPs@Chitosan/PVA Nanocomposite

UV-Vis absorption spectra were measured in the PerkinElmer Lambda 750 instrument in the scanning range of 200-800 nm. TEM analysis was performed using a JEOL JEM 100 kV transmission electron microscope. XRD analysis was performed using the Rigaku MINIFLEX 600 X instrument. PerkinElmer FTIR spectrum was used to find biomolecules involved in green synthesis.

DPPH test

The antioxidant activity of AgNPs@Chitosan/PVA nanocomposite was determined using the 250 μ L of DPPH solution was added to 3 mL of nanocomposite solution at different concentrations (5, 25, 50, and 100 μ g/mL). Ascorbic acid was used as a positive control in the DPPH study. DPPH was used as a negative control. Antiradical activity, expressed as percent inhibition (%) of the DPPH radical, was calculated by determining the decrease in absorbance upon the addition of test samples.

The DPPH radical scavenging activity was determined according to equation (2):

DPPH scavenging percentage (%) =
$$(A_c - A_t)/A_c \times 100$$
 (2)

where A_c and A_t are the absorbance of the control and test samples, respectively (after 30 minutes, at 517 nm).

H₂O₂ antioxidant test

Antioxidant activity was determined by H_2O_2 free radical scavenging assay using the Pick and Mizel method. 100 µL of H_2O_2 solution (5 mM) was added to different concentrations (5, 25, 50, and 100 µg/mL) of AgNPs@Chitosan/PVA nanocomposite and absorbance was read at 230 nm after 20 minutes of incubation [33]. Ascorbic acid was used as a positive control. H_2O_2 was used as a negative control. The following equation was used to determine the H_2O_2 radical scavenging ability (2):

H₂O₂ scavenging percentage (%) = $(A_c - A_t)/A_c \times 100$ (2)