Facile Synthesis of Z-Scheme Fe-nPPy/BiOI Nanocomposite for Enhanced Visible Light Driven

Photocatalytic Activity

Rajesh Kumar^{a,b}, Rituporn Gogoi^a, Kajal Sharma^a, Astha Singh^a, Prem Felix Siril^a*

^a School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh-175005, India

^b Govt. College Kullu, Himachal Pradesh- 175101, India

*Corresponding author: prem@iitmandi.ac.in

Table of Content:

Sr. No.	Contents	Page
1	Fig. S1: XRD patterns (a) and FTIR spectra (b) of the synthesized nanocomposites	S-2
2	Fig. S2: XPS survey spectra of synthesized nanocomposites.	S-2
3	Fig. S3: Deconvoluted Fe2p XPS spectra of (a) Fe-nPPy and (b) Fe-nPPy/BiOI-3	S-3
4	Table S1: Surface elemental composition of Fe-nPPy/BiOI-3 as per XPS survey spectra.	S-3
5	Fig. S4: SEM images (a & b) of BiOI and Fe-nPPy (c & d).	S-4
6	Fig. S5: (a) Adsorption profiles of CV dye over Fe-nPPy/BiOI catalysts.	S-5
7	Fig. S6: Variation in the UV-Vis absorbance spectra with time of: (a) CV dye and (b) Tetracycline (TC) using Fe-nPPy/BiOI-3 photocatalyst under visible light irradiation.	S-5
8	Table S2: Comparison of the photocatalytic activity of the Fe-nPPy/BiOI-3 with some other hybrid composites for the degradation of Crystal violet (CV) dye and Tetracycline (TC) under visible light irradiation.	S-6
9	Fig. S7: XRD patterns of fresh and recovered Fe- nPPy/BiOI-3 photocatalyst after three cycles	S-7
10	Fig. S8: (a) Time-dependent variation of the UV-visible absorbance spectra of NBT during visible light irradiation in presence of Fe-nPPy/BiOI-3 photocatalyst and (b) the respective kinetic curve.	S-8
11	Fig. S9: (a) Mott-Schottky plots of (a) BiOI and (b) Fe-nPPy.	S-9
12	Fig. S10: XPS spectra of Fe-nPPy/BiOI-3 before and after photocatalysis for Bi-4f and N-1s respectively.	S-10
13	References	S-11

Fig. S1: (a) XRD patterns and (b) FTIR spectra of the synthesized nanocomposites.

Fig. S2: XPS survey spectra of as synthesized nanocomposites.

Fig. S3: Deconvoluted Fe2p XPS spectra of (a) Fe-nPPy and (b) Fe-nPPy/BiOI-3.

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %	0	SF
I3d	619.75	1.58	2755213.41	7.27	1	42.416
Bi4f	159.88	2.52	5469514.21	11.55	1	38.304
C1s	285.87	3.08	608732.95	53.19	1	1
Ols	531.23	4.23	596396.4	21.53	1	2.881
N1s	400.79	3.3	110187.25	6.2	1	1.676
Fe2p	720.08	0.56	29798.18	0.25	1	14.353

Table S1: Surface elemental composition of Fe-nPPy/BiOI-3 as per XPS survey spectra.

Fig. S4: FESEM images of: (a & b) BiOI and (c & d) Fe-nPPy.

Fig. S5: (a) Adsorption profiles of CV dye over Fe-nPPy/BiOI catalysts.

Fig. S6: Variation in the UV-Vis absorbance spectra with time of: (a) CV dye and (b) Tetracycline (TC) using FenPPy/BiOI-3 photocatalyst under visible light irradiation.

Table S2: Comparison of the photocatalytic activity of the Fe-nPPy/BiOI-3 with some other hybrid composites for the degradation of Crystal violet (CV) dye and Tetracycline (TC) under visible light irradiation.

Photocatalyst	Pollutant,	Catalyst	Visible	Synthesis	Removal	Time	Refer
	concentrati	amount	light source	method	(%)	(min.)	ences
	on (ppm)	(mg/mL)					
g-C ₃ N ₄ /Ag ₃ VO ₄	CV, 20	1	500 W Xe	ultrasound-	85	150	[1]
			arc lamp	assisted			
F-TiO ₂ (B)/	CV, 30	0.1	500 W	Ballmill +	77.2	120	[2]
fullerene			halogen	hydrothermal			
			lamp				
SrFeO ₃ -x/g-	CV, 10	0.1	150 W Xe	sintering	99.9	720	[3]
C ₃ N ₄			arc lamp	method			
Gd doped	CV, 20	0.2	250 W	auto-	84.5	150	[4]
BiFeO ₃			mercury	combustion			
			lamp	method			
Fe-nPPy/BiOI-3	CV, 10	0.5	192 W	RT co-	84.0	120	Curre
			white LEDs	precipitation			nt
							work
Fe ₃ O ₄ @TiO ₂ -	TC, 50	0.2	300 W Xe	Facile	92.4	120	[5]
Со			lamp	reduction			
				method			
Ag/AgBr/AgI@	TC, Not	0.3	300 W Xe	Supercrictical	79.5	50	[6]
SiO ₂ aerogel	known		arc lamp	drying process			
PPy-BiOI	TC, 30	1	Not known	Co-	61	300	[7]
				precipitation			
Fe-nPPy/BiOI-3	TC,	1	192 W	RT co-	74	120	Curre
	20		white LEDs	precipitation			nt
							work

Fig. S7: XRD patterns of fresh and recovered Fe- nPPy/BiOI-3 photocatalyst after three cycles

Fig. S8: (a) Time-dependent variation of the UV-visible absorbance spectra of NBT during visible light irradiation in presence of Fe-nPPy/BiOI-3 photocatalyst and (b) the respective kinetic curve.

Concentration of $\bullet O_2^-$ radical = $k_{NBT} \times t \times C_{initial} \times 4$

 $k_{NBT} = 0.0295 \text{ min}^{-1}$ (loss kinetic constant of NBT)

t = 15 min (the light exposure time)

 $C_{initial} = 30 \ \mu M \ (NBT \ initial \ concentration)$

4 is the constant coefficient between the reaction of NBT and ${}^{\bullet}\mathrm{O_2^-}$

Fig. S9: (a) Mott-Schottky plots of (a) BiOI and (b) Fe-nPPy.

We have used the following relation for conduction band calculation;

E (RHE) = E (Ag/AgCl) + 0.197 (at pH = 7)

Further, valence band edge is calculated by applying the relation;

 $E_{CB}=E_{VB}-E_g\left(E_g \text{ is calculated from DRS studies for BiOI and Fe-nPPy}\right)$

Fig. S10: XPS spectra of Fe-nPPy/BiOI-3 before and after photocatalysis for Bi-4f and N-1s respectively.

References:

S[1]: S. Wang, D. Li, C. Sun, S. Yang, Y. Guan, H. He, Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation, Appl. Catal. B Environ. 144 (2014) 885–892. https://doi.org/10.1016/j.apcatb.2013.08.008

S[2]: Y. Panahian, N. Arsalani, R. Nasiri, Enhanced photo and sono-photo degradation of crystal violet dye in aqueous solution by 3D flower like F-TiO2(B)/fullerene under visible light, J. Photochem. Photobiol. A Chem. 365 (2018) 45–51. https://doi.org/10.1016/J.JPHOTOCHEM.2018.07.035

S[3]: H.P. Lin, C.C. Chen, W.W. Lee, Y.Y. Lai, J.Y. Chen, Y.Q. Chen, J.Y. Fu, Synthesis of a SrFeO3-x/g-C3N4 heterojunction with improved visible-light photocatalytic activities in chloramphenicol and crystal violet degradation, RSC Adv. 6 (2016) 2323–2336. https://doi.org/10.1039/c5ra21339h

S[4]: S. Kossar, I.B.S. Banu, N. Aman, R. Amiruddin, Investigation on photocatalytic degradation of crystal violet dye using bismuth ferrite nanoparticles, J. Dispers. Sci. Technol. 42 (2021) 2053–2062. https://doi.org/10.1080/01932691.2020.1806861

S[5]: Tan, Q., Zhang, W., ... Niu, Li, 2023. Magnetically induced construction of core-shell architecture Fe3O4@TiO2-Co nanocomposites for effective photocatalytic degradation of tetracycline. New Journal of Chemistry 47, 15951–15962. doi:10.1039/d3nj02080k

S[6]: Ma, C., Shi, F., Liu, J., Li, T., Zhu, K., Liu, J., ... Xiao, J. (2023, June 1). Construction of a novel Ag/AgBr/AgI@SiO2 composite aerogel with controlled pore structure: Efficient removal of tetracycline by adsorption/photocatalysis synergism under visible light irradiation. Journal of Environmental Chemical Engineering. Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.110157

S[7]: Xu, J., Hu, Y., Zeng, C., Zhang, Y., & Huang, H. (2017). Polypyrrole decorated BiOI nanosheets: Efficient photocatalytic activity for treating diverse contaminants and the critical role of bifunctional polypyrrole. Journal of Colloid and Interface Science, 505, 719–727. https://doi.org/10.1016/j.jcis.2017.06.054