Electronic Supporting Information for

Investigating Naproxen Removal from Pharmaceutical Factory Effluents Using UVA/MIL-88-A/PS and Solar/MIL-88-A/PS Systems

Sarah Ghazali^a, Abbas Baalbaki^a, Weam Bou Karroum^a, Alice Bejjani^{b*}, Antoine Ghauch^{a*}

^aAmerican University of Beirut, Faculty of Arts and Sciences, Department of Chemistry

P.O. Box 11-0236 Riad El Solh - 1107-2020 Beirut – Lebanon

^b Lebanese Atomic Energy Commission, CNRS, Research and Development department

P.O. Box 11-8281, 1107-2260 Riad El Solh - Beirut - Lebanon

Prepared for Environmental Science: Advances Journal

*Corresponding authors:

Antoine Ghauch: antoine.ghauch@aub.edu.lb Tel/fax: +961 1350000/+961 1 365217

Alice Bejjani: abejjani@cnrs.edu.lb Tel/fax: +961 1 450811/+961 1 450810

Linest Output NAP					
y = mx + b					
m	2.312642	-0.21149	b		
Sm	0.008292	0.037073	Sb		
R ²	0.99991	0.083388	Sy		

(a)

Fig. S1. (a) HPLC-DAD calibration curve for NAP. The error bars are calculated at 95% $\pm \frac{ts}{\sqrt{n}}$, where t is the student value (t = 2.447 for 6 degrees of freedom at 95% confidence level) and s the standard deviation of 7 replicates. (b) The LINEST output calculated through Excel provided the slope v

replicates. (b) The LINEST output calculated through Excel provided the slope, yintercept, the regression coefficient, and all statistical data including standard deviations on variables. **(b)**

Fig. S2. Chromatogram of NAP extracted at 228 nm showing the by-products formed at 6.30, 8.06 and 9.79 min, respectively under UVA irradiation in UVA/MIL-88-A/PS system.

Fig. S3. Degradation by-products profile under different conditions: Solar/MIL-88-A/PS system control in the presence and/or absence of MIL-88-A and PS. Experimental conditions: $[NAP]_0 = 50 \text{ mg } \text{L}^{-1}$, $[PS]_0 = 2 \text{ mM}$, $[MIL-88-A]_0 = 25 \text{ mg } \text{L}^{-1}$.

Fig. S4. Chromatogram of NAP extracted at 228 nm showing the by-products formed at 6.93, 8.73 and 11.13 min, respectively under Solar/MIL-88-A/PS system.

Case of chlorides					
(a) UVA system	pH initial	pH final			
[NaCl] free	6.10	3.73			
$[NaCl] = 200 \text{ mg } L^{-1}$	6.11	4.24			
$[NaCl] = 2000 \text{ mg } L^{-1}$	5.72	4.29			
$[NaCl] = 20\ 000\ mg\ L^{-1}$	5.79	4.56			
(b) Solar system	pH initial	pH final			
[NaCl] free	6.12	2.51			
$[NaCl] = 200 \text{ mg } L^{-1}$	6.85	2.59			
$[NaCl] = 2000 \text{ mg } L^{-1}$	6.41	2.78			
$[NaCl] = 20\ 000\ mg\ L^{-1}$	6.49	2.93			
Case of phosphates (phosphate buffer (PB) at pH=4)					
(a) UVA system	pH initial	pH final			
[PB] free	6.10	3.73			
[PB] = 1 mM	5.41	4.32			
[PB] = 5 mM	4.91	4.3			
[PB] = 10 mM	4.66	4.25			
(b) Solar system	pH initial	pH final			
[PB] free	6.12	2.51			
[PB] = 1 mM	5.81	2.99			
[PB] = 5 mM	5.11	3.16			
[PB] = 10 mM	4.83	3.27			
pH effect (10 mM phosphate buffer)					
(a) UVA system	pH initial	pH final			
control	6.10	3.73			
[pH] = 4	4.68	4.28			
[pH] = 7	7.39	7.34			
[pH] = 9	8.82	8.41			
(b) Solar system	pH initial	pH final			
control	6.12	2.51			
[pH] = 4	4.63	3.20			
[pH] = 7	7.23	7.08			
[pH] = 9	8.51	7.50			

Table S1. pH values under different experimental conditions for the (a) UVA/MIL-88-A/PS/NAP system and (b) Solar/MIL-88-A/PS/NAP system

- S6 -

Case of bicarbonates					
(a) UVA system	pH initial	pH final			
$[HCO_{3}]$ free	6.10	3.73			
$\begin{bmatrix} HCO_{3} \end{bmatrix} = 1 \text{ mM}$	8.05	7.02			
$[HCO_{3}] = 50 \text{ mM}$	8.59	8.54			
$[HCO_{3}] = 100 \text{ mM}$	8.56	8.59			
(b) Solar system	pH initial	pH final			
$\begin{bmatrix} HCO_{3} \end{bmatrix}$ free	6.12	2.51			
$\begin{bmatrix} HCO_{\overline{3}} \end{bmatrix} = 1 \text{ mM}$	8.09	2.88			
$[HCO_{3}^{-}] = 50 \text{ mM}$	9.04	8.78			
$[HCO_{3}] = 100 \text{ mM}$	8.84	8.91			

Fig. S5. EPR spectra of DMPO-radical adducts in different reaction systems. Experimental conditions: [PS] = 2.5 mM, $[MIL-88-A] = 12.5 \text{ mg } L^{-1}$, [DMPO] = 100 mM. The acquisition duration of EPR spectra is about 100 min for all systems.

Fig. S6. EPR spectra. Green – simulated EPR spectrum for trapped methyl radicals. $a_N = 1.58 \text{ mT}$, $a_H = 2.28 \text{ mT}$. Blue – simulated EPR spectrum for trapped hydroxyl radicals. $a_N = 1.49 \text{ mT}$, $a_H = 1.49 \text{ mT}$. Red – the sum of the above two simulated trapped radical spectra. Black – experimental EPR spectrum under the following Experimental conditions: [PS] = 2.5 mM, [MIL-88-A] = 12.5 mg L⁻¹, [DMPO] = 100 mM.

Fig. S7. Activation mechanism of PS in the UVA/MIL-88-A system

Fig. S8. TOF-SIMS characterization results: (a) Image of the sum of all positives secondary ions of the MIL-88-A as prepared in the presence of NAP and PS at t = 80 min. The color scale goes from black (lack of emission) to white (saturated emission). (b) Overlay of the characteristic peak of MIL-88-A, Fe⁺ ion at m/z 56 image (red color) and the characteristic peak of decarboxylated NAP at m/z 185.0961 image (green color).