Supporting Information

Band structure engineering of polyimide photocatalyst towards enhanced water splitting

Sheng Chu,^{a,b,c} Xintie Wang,^a Liu Yang,^a Huiyan Zhang,[↑]^a Rui Xiao,^a Ying Wang[↑]^{b,c} and Zhigang Zou^c

^aKey Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China

^bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China

^cEco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210023, PR China

**Corresponding authors E-mail: hyzhang@seu.edu.cn, wangy@nju.edu.cn*

Table S1. Physicochemical properties and photocatalytic H_2 and O_2 evolution rate of AM-PI andAD-PI with visible light irradiation.

Sample	Surface area (m ² /g)	Gas evolution rate (µmol/h)		Specific activity of gas evolution rate (µmol·g/(m ² ·h))	
		H ₂	O ₂	H_2	O ₂
AM-PI	5.1	15.2	0.4	3.0	0.08
AD-PI	1.9	4.0	0.7	2.1	0.37

Table S2. Performance comparison of PI with other reported PIs and $g-C_3N_4$ for photocatalytic hydrogen evolution and oxygen evolution.

Photocatalyst	Sample preparation condition	Hydrogen evolution rate (µmol/h)	Oxygen evolution rate (µmol/h)	Reference
AM-PI	MA:PMDA=1:1, 325 °C	15.2	0.4	This work
AD-PI	MA:PMDA=1:2, 325 °C	4	0.7	This work
PI-300	MA:PMDA=1:1, 300 °C	5.3	/	1
PI-350	MA:PMDA=1:1, 350 °C	9.6	/	1
melem	MA, 425 °C	1.9	/	2
PI-BP	melem:BPDA=1:1, 325 °C	1.2	/	2
PI-NT	melem:NTDA=1:1, 325 °C	1.3	/	2
PI	melem:PMDA=1:1, 325 °C	20.6	7.7	3
g-C ₃ N ₄	MA, 550 °C	7	0.8	3

H₂ evolution condition: 10 vol% methanol, 1 wt% Pt-deposited, λ >420 nm.

 O_2 evolution condition: 0.01 M AgNO₃, λ >420 nm.

Figure S1. (a) PL spectra (excitation at λ =325 nm) and (b) ESR spectra in dark and in visible light irradiation (λ >420 nm, a 300 W Xe lamp) of AM-PI and AD-PI.

Figure S2. FTIR spectra of (a) MA and MA-325, (b) PMDA and PMDA-325, XRD spectra of (c) MA and MA-325, (d) PMDA and PMDA-325.

Figure S3. Recycle experiments of H₂ evolution from a 10 vol % aqueous methanol solution by 1 wt% Pt-deposited AM-PI, Reaction conditions: 100 mg of AM-PI, visible light irradiation (λ > 420 nm), 5 h.

Figure S4. (a) FTIR and (b) XRD spectra of AM-PI before and after hydrogen evolution cycle experiments.

References

- S. Chu, Y. Wang, Y. Guo, P. Zhou, H. Yu, L. Luo, F. Kong, Z. Zou, Facile green synthesis of crystalline polyimide photocatalyst for hydrogen generation from water, *J. Mater. Chem.*, 2012, 22, 15519.
- S. Chu, Y. Wang, C. Wang, J. Yang, Z. Zou, Bandgap modulation of polyimide photocatalyst for optimum H₂ production activity under visible light irradiation, *Int. J. Hydrogen Energy*, 2013, **38**, 10768-10772.
- 3 S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property, *ACS Catal.*, 2013, **3**, 912-919.