Supporting Information

Ultra-Low Cost Supercapacitors from Coal Char: Effect of Electrolyte on Double Layer Capacitance

Zahra Karimi^a, Jaron Moon^a, Joshua Malzahn^b, Eric Eddings^b, and Roseanne Warren^a*

^a Department of Mechanical Engineering, University of Utah

1495 E 100 S, 1550 MEK

Salt Lake City, Utah, 84112, USA.

* roseanne.warren@utah.edu

^b Department of Chemical Engineering, University of Utah

50 S. Central Campus Dr, 3290 MEB

Salt Lake City, UT 84112, USA.

Table S1. Literature reports of coal char and carbon-based supercapacitors employing comparable
 electrolyte concentrations as those used in this work (WIS = water-in-salt; IL = ionic liquid).

	Electrolyte	Concentration (this work)	Comparable Literature References	
	H_2SO_4	0.5 M	Madhusree et al. ¹ (0.5 M)	
Aqueous			Benoy et al. ² (6 M)	
			Zou <i>et al.</i> ³ (6 M)	
	КОН	6 M	Yaglikci et al. ⁴ (6 M)	
			Bora <i>et al.</i> ⁵ (6 M)	
			Bichat <i>et al.</i> ⁶ (6 M)	
	Na ₂ SO ₄	0.5 M	0.5 M Bichat <i>et al.</i> ⁶ (0.5 M)	
	LiNO ₃	4 M	Jiang <i>et al.</i> ⁷ (4 M)	
WIS	NaClO ₄	13 m	Bu et al. ⁸ (10 m, 17 m)	
			Gharouel and Béguin ⁹ (10 m, 17 m)	
IL	BMIM BF ₄ /AN	1:1 wt%	Kim <i>et al.</i> ¹⁰ (1:1 wt%)	

Component	Weight %	
С	63.14	
Ash	12.76	
0	11.63	
H ₂ O	6.53	
Н	4.36	
N	1.13	
S	0.45	

 Table S2. Ultimate analysis of raw Sufco coal (weight % of total sample).

Table S3. Ultimate analysis of Sufco coal ash (weight % of ash).

Ash component	Weight %	
SiO ₂	54.07	
CaO	15.25	
Al ₂ O ₃	11.03	
SO3	6.35	
TiO ₂	4.17	
Fe ₂ O ₃	4.17	
MgO	3.99	
Other	0.97	

Element	Weight %	Atomic %	
СК	75.0	86.0	
O K	12.0	10.1	
Si K	4.0	1.9	
Ca K	3.0	1.0	
Other trace elements	4.9	0.8	

 Table S4. Average EDS measurements of coal char (elemental weight % and atomic %).

Figure S2. Scan rate dependence of two-electrode CV current at varying cell voltages (charging) for: a) 4 M LiNO₃, b) 0.5 M Na₂SO₄, c) 13 m NaClO₄, d) BMIM BF₄/AN, e) 0.5 M H₂SO₄ and f) 6 M KOH electrolytes. Slope and intercept values of the linear fits are used to determine k_1 and k_2 (Figure 6).

Figure S3. Bode plots of EIS measurements for: a) 4 M LiNO₃, b) 0.5 M Na₂SO₄, c) 13 m NaClO₄, d) BMIM BF₄/AN, e) 0.5 M H₂SO₄, and f) 6 M KOH electrolytes. Grey circles are measured data points; black lines are Randles equivalent circuit model fits.

	ВТО					
Electrolyte	L	rm (Ω)	rk (Ω)	Υ S ^a /Ω (10 ⁻³)	α (10 ⁻³)	
13 m NaClO ₄	0.06	477.70	5.88	81.57	703.40	
6 M KOH	1.80	3.33	2989.00	4.01	872.70	
0.5 M H ₂ SO ₄	12.70	0.28	15.62	0.16	760.50	
4 M LiNO ₃	1.84	74.84	0.01	0.01	944.80	
0.5 M Na ₂ SO ₄	3.58	0.13	1446	1.12	758.60	
BMIM BF4/AN	669.70	4256.00	5.88	15.11	934.80	

Table S5. Equivalent circuit model Bisquert Open (BTO) parameters used to fit EIS measurements.

Table S6. Equivalent circuit model parameters used to fit EIS measurements.

Electrolyte	R _s (Ω)	R _{ct} (Ω)	CPE ₁ (S ^a /Ω) (10 ⁻³)	CPE ₂ (S ^a /Ω) (10 ⁻³)	Goodness of fit $(\chi^2)(10^{-6})$
13 m NaClO ₄	0.20	44.99	74.62	0.97	35.30
6 M KOH	0.21	2.86	1.76	7.63	728.10
0.5 M H2SO4	0.21	43.96	5.35	5.05	24.11
4 M LiNO ₃	0.31	0.35	0.21	1.94	230.60
0.5 M Na ₂ SO ₄	0.67	0.23	0.25	2.30	173.80
BMIM BF4/AN	11.70	165.00	0.13	1.40	106.70

References

- Madhusree J. E., P. R. Chandewar, D. Shee and S. S. Mal, J. Electroanal. Chem., 2023, 936, 117354.
- S. M. Benoy, D. Bhattacharjya, M. Bora and B. K. Saikia, ACS Appl. Electron. Mater., 2022, 4, 6322-6334.
- Y. Zou, H. Wang, L. Xu, M. Dong, B. Shen, X. Wang and J. Yang, J. Power Sources, 2023, 556, 232509.
- S. Yaglikci, Y. Gokce, E. Yagmur, A. Banford and Z. Aktas, *Surf. Interfaces*, 2021, 22, 100899.
- M. Bora, S. M. Benoy, J. Tamuly and B. K. Saikia, J. Environ. Chem. Eng., 2021, 9, 104986.
- 6. M. Bichat, E. Raymundo-Piñero and F. Béguin, Carbon, 2010, 48, 4351-4361.
- J. Jiang, B. Liu, G. Liu, D. Qian, C. Yang and J. Li, *Electrochim. Acta*, 2018, 274, 121-130.
- 8. X. Bu, L. Su, Q. Dou, S. Lei and X. Yan, J. Mater. Chem. A, 2019, 7, 7541.
- 9. S. Gharouel and F. Béguin, Electrochim. Acta, 2023, 450, 142212.
- 10. T. Kim, G. Jung, S. Yoo, K.S. Suh and R. S. Ruoff, ACS Nano, 2013, 7, 6899-6905.