Supporting Information:

SnO₂/h-BN Nanocomposite Modified Separator as High-Efficiency Polysulfide Trap in Lithium-Sulfur Battery

Bongu Chandra Sekhar¹, Yasmin Mussa¹, Sara Aleid¹, Muhammad Arsalan², and Edreese H. Alsharaeh^{* 1}

¹ College of Science and General Studies, AlFaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia

²EXPEC Advanced Research Center, Saudi Aramco, P.O. Box 5000, Dhahran, 31311, Saudi Arabia

Figure S1. Raman spectra of the $SnO_2/10\%$ h-BN composite.

Figure S2. Thermal stability behavior of (a) $SnO_2/5\%$ h-BN composite coated separator, (b) $SnO_2/10\%$ h-BN composite coated separator, (c) $SnO_2/25\%$ h-BN composite coated separator and (d) pristine polypropylene from room temperature to 100 °C.

Table S1. Thermal shrinkage of the separators.

S. No	Separator Name	Shrinking (%)
1.	Polypropylene	47
2.	SnO ₂ /5% h-BN	31
3.	SnO ₂ /10% h-BN	4.7
4.	SnO ₂ /25% h-BN	6.3

Figure S3. Electrolyte wettability study of (a) $SnO_2/5\%$ h-BN composite coated separator, $SnO_2/10\%$ h-BN composite coated separator, and (c) $SnO_2/25\%$ h-BN composite coated separator.

Figure S4. Contact angle study of the (a) $SnO_2/5\%$ h-BN composite coated separator, $SnO_2/10\%$ h-BN composite coated separator, and (c) $SnO_2/25\%$ h-BN composite coated separator.

Figure S5. TEM images of (a and b) SnO₂.

Figure S6. Peak voltages (cathode peaks: I and II, anodic peaks III) of $SnO_2/5\%$ h-BN composite coated separated cell (blue color), $SnO_2/10\%$ h-BN composite coated separated cell (red color) and $SnO_2/25\%$ h-BN composite coated separated cell (orange color).

Figure S7. Cycling performance of lithium sulfur batteries fabricated with $SnO_2/15\%$ h-BN composite coated separator, and $SnO_2/20\%$ h-BN composite coated separator at a current rate of 1.0 C.

Figure S8. Areal capacity of lithium sulfur batteries fabricated with the $SnO_2/5\%$ h-BN composite coated separator, $SnO_2/10\%$ h-BN composite coated separator, and $SnO_2/25\%$ h-BN composite coated separator.

Figure S9. Digital photograph of polysulfide adsorption study using (a) $SnO_2/5\%$ h-BN coated separator, (b) $SnO_2/10\%$ h-BN coated separator and (c) $SnO_2/25\%$ h-BN coated separator before and after 24 hours; (d) UV–Vis spectra of $SnO_2/5\%$ h-BN coated separator, $SnO_2/10\%$ h-BN coated separator and $SnO_2/25\%$ h-BN coated separator after 24 hours.