Supporting Information for:

Flexible Direct Synthesis of Phosphorus-Rich CoP₃ on Carbon Black and its Examination in Hydrogen Evolution Electrocatalysis

Ishanka A. Liyanage, Hannah Barmore, Edward G. Gillan* University of Iowa, Department of Chemistry, Iowa City, Iowa 52242 USA

E-mail: edward-gillan@uiowa.edu	ORCID (Edward G. Gillan): 0000-0002-2047-0929
	ORCID (Ishanka A. Liyanage) 0000-0003-4814-0099

Table of Contents (Tables and Figures are listed in the order they appear in the main text)

Figure S1. Images of electrochemical cell, coned, 50% graphite carbon wax electrode tips, brass current collector, working electrode and tip geometries for XRD and SEM-EDS.

Figure S2. XRD results of 25-CoCl₂/C product after methanol evaporation followed by heated evacuation. **Figure S3.** XRD results of targeted 5-CoP₃/C reaction using 3-fold excess phosphorus to stoichiometric amounts.

Figure S4. XRD results of pristine carbon black, annealed carbon black and annealed carbon black with excess phosphorous at 500 °C for 48 hours.

Figure S5. Raman spectra of CoP₃, x-CoP₃/C (x = 5,10, 25 mol%) and annealed carbon black with and without excess P in the zoomed in region of 200-500 cm⁻¹.

Figure S6. EDS elemental maps of (A) CoP₃ (B) 25-CoP₃/C.

Figure S7. EDS elemental maps of (C) 10-CoP₃/C (D) 5-CoP₃/C.

Figure S8. EDS elemental (A) map and (B) analysis of annealed carbon black with excess phosphorus.

Figure S9. 50-point BET full isotherms of annealed carbon black with or without excess phosphorus, CoP_3 and x-CoP₃/C (x mol% = 5, 10, 25) materials.

Figure S10. iR uncompensated and 85% iR compensated LSV overlay HER results for CoP₃.

Figure S11. iR uncompensated and 85% iR compensated LSV overlay HER results for 25-CoP₃/C.

Figure S12. iR uncompensated and 85% iR compensated LSV overlay HER results for 10-CoP₃/C.

Figure S13. iR uncompensated and 85% iR compensated LSV overlay HER results for 5-CoP₃/C.

Figure S14. iR uncompensated and 85% iR compensated LSV overlay HER results for annealed carbon black with excess phosphorus.

Figure S15. Representative 85% iR compensated LSV overlay plot of HER results for CoP_3 , x-CoP₃/C (x = 5, 10, 25 mol%) and annealed carbon black with excess phosphorus.

Figure S16. Analysis of scan rate data from CV runs to calculate ECSA values before and after 50 LSV scans (iR uncompensated) for CoP₃ and 25-CoP₃/C materials.

Figure S17. Analysis of scan rate data from CV runs to calculate ECSA values before and after 50 LSV scans (iR uncompensated) for 10-CoP₃/C and 5-CoP₃/C materials.

Figure S18. 18-hour constant potential chronoamperometry (CA) HER experiments for CoP₃ and x-CoP₃/C (x = 5, 10, 25 mol%) catalysts using platinum counter experiments.

Figure S19. 18-hour constant potential chronoamperometry (CA) HER experiments for CoP_3 and x-CoP₃/C (x = 5, 10, 25 mol%) catalysts using graphite counter experiments.

Figure S20. XRD results of CoP_{3} , and 25-CoP₃/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments.

Figure S21. XRD results of 10-CoP₃/C and 5-CoP₃/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments.

Figure S22. SEM images of CoP_{3} , and x-CoP₃/C materials embedded on C_{wax} after 18-hour CA HER experiments.

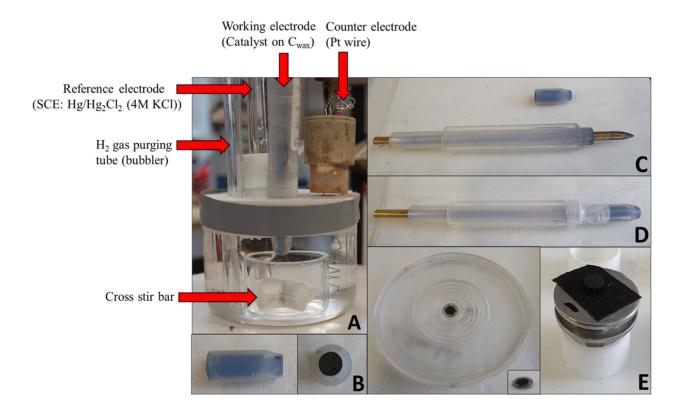

Figure S23.EDS maps of (A) CoP_3 (B) 25- CoP_3/C embedded on C_{wax} after 18-hour CA HER experiments. Figure S24. EDS maps of (C) 10- CoP_3/C (D) 5- CoP_3/C embedded on C_{wax} after 18-hour CA HER experiments.

Table S1. EDS compositional analysis of CoP_3 , and x-CoP₃/C materials embedded on C_{wax} tips after 18-hour constant potential chronoamperometry (CA) HER experiments.

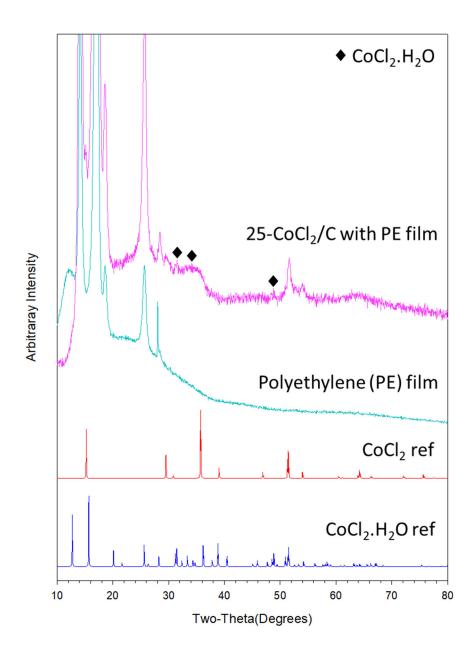
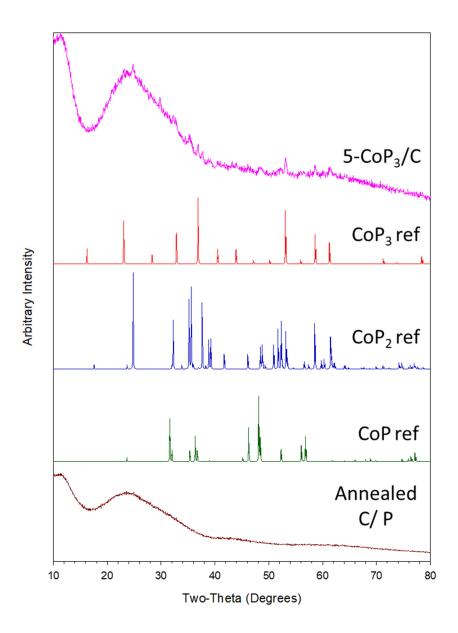
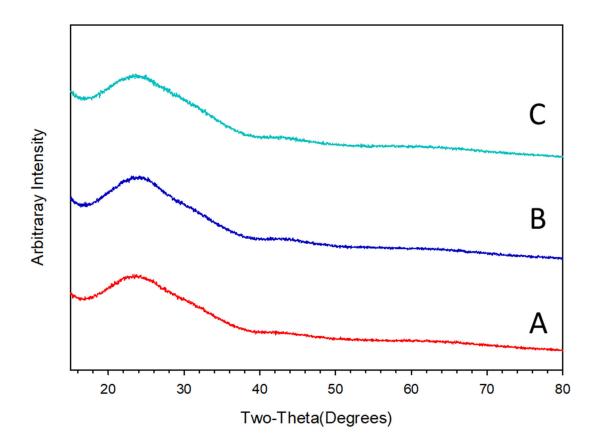

Figure S25. Raman spectra of CoP_3 and 25- CoP_3/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments in the region of 200-2000 cm⁻¹.

Figure S26. Raman spectra of CoP_3 and 25- CoP_3/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments in the region of 200-500 cm⁻¹.


Table S2. Literature comparison table for carbon-supported cobalt phosphides HER in 0.5 M H₂SO₄.


Figure S1. Images of electrochemical cell and working electrode: (A) Three electrode, single compartment cell, (B) coned, C_{wax} electrode tip in different geometries, (C) disassembled C_{wax} electrode tip + brass current collector, (D) assembled C_{wax} working electrode, and (E) cut slice C_{wax} tip geometries for post electrochemical XRD and SEM-EDS analysis.

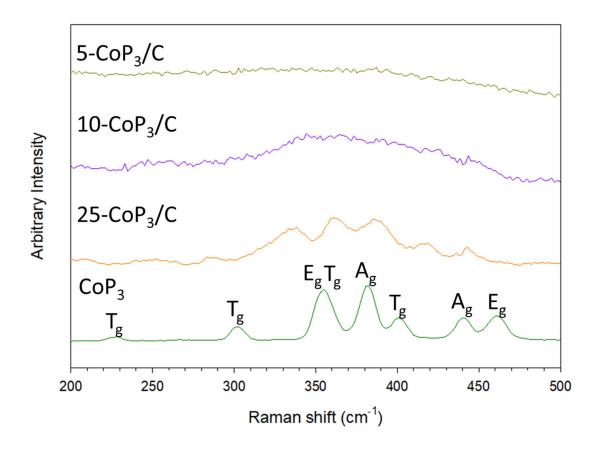

Figure S2. XRD results of 25-CoCl₂/C (25 mol% CoCl₂ deposited onto carbon black) product after methanol evaporation followed by heated evacuation (180 ° C, 15 min).

Figure S3. XRD results of targeted 5-CoP₃/C reaction using 3-fold excess phosphorus relative to stoichiometric amounts. The 5-CoP₃/C composite and carbon black (C/P) were annealed with 3-fold excess phosphorus at 500 °C for 48 hours.

Figure S4. XRD results of (A) pristine carbon black (XC-72), annealed carbon black at 500 °C for 48 hours (B) without and (C) with excess phosphorus.

Figure S5. An overlay of Raman spectra of CoP_3 , x-CoP₃/C (x = 5,10, 25) in the zoomed in region of 200-500 cm⁻¹.

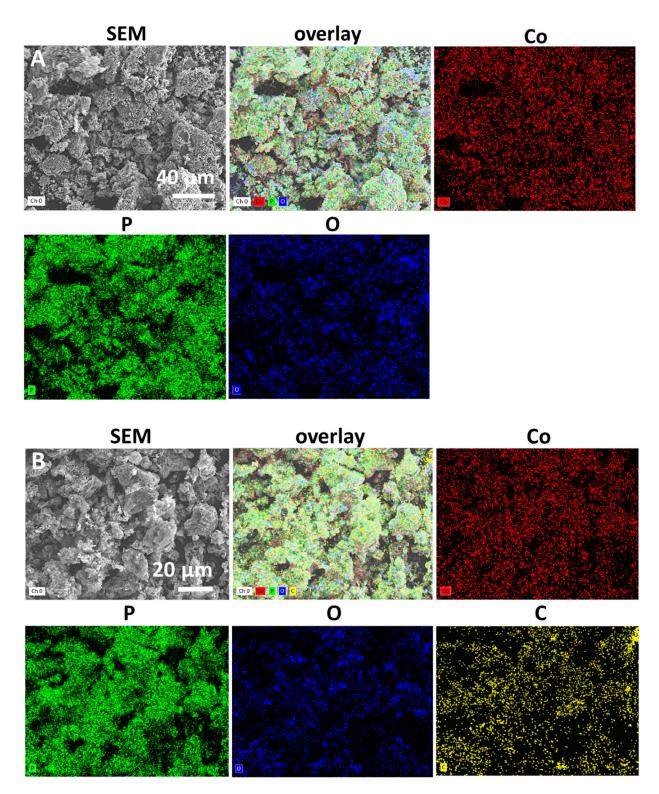
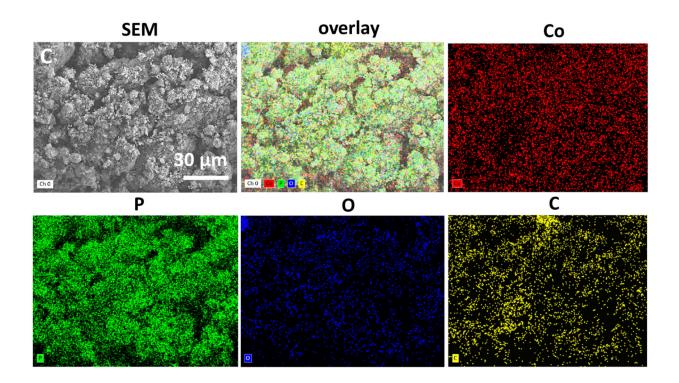



Figure S6. EDS elemental maps of (A) CoP₃ and (B) 25-CoP₃/C.

SEM

overlay

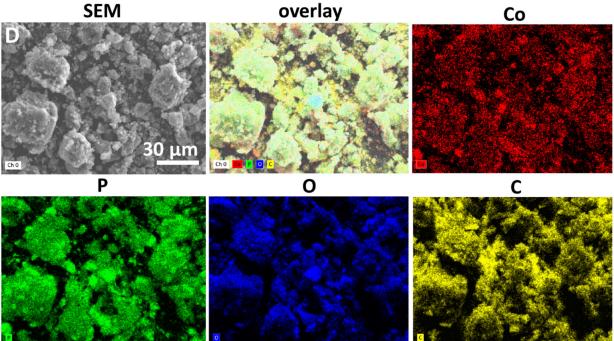
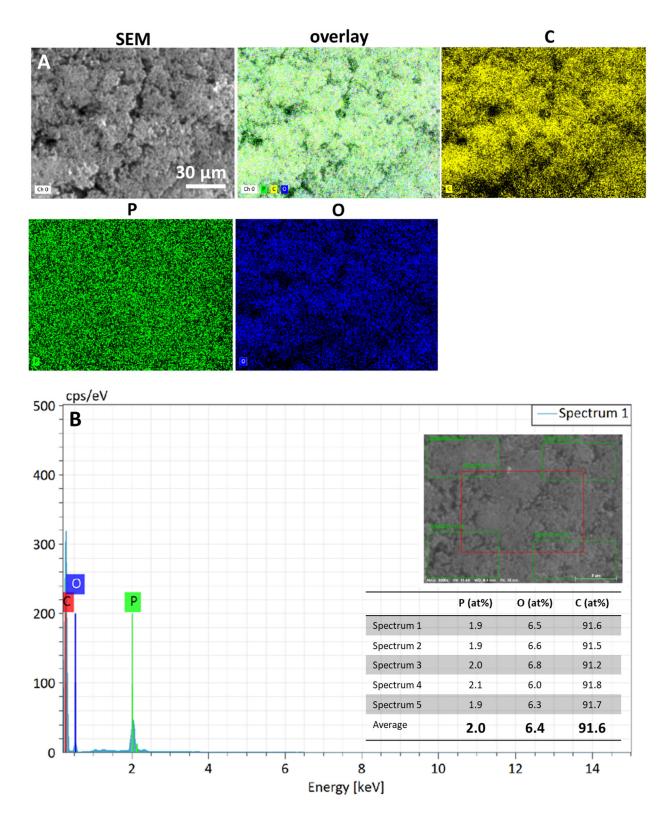
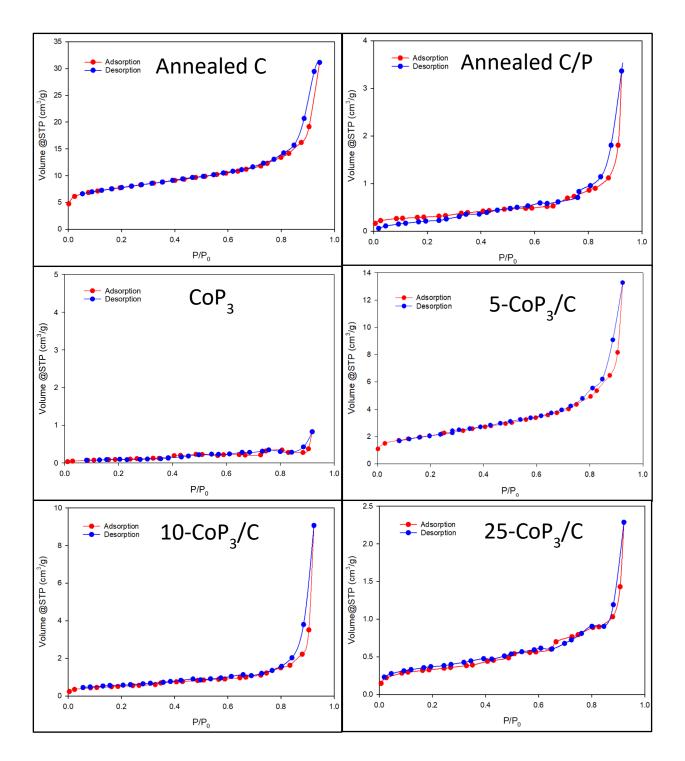
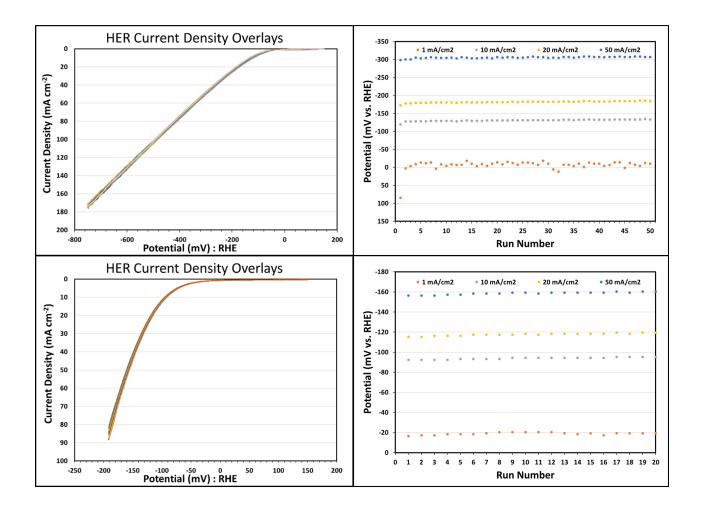
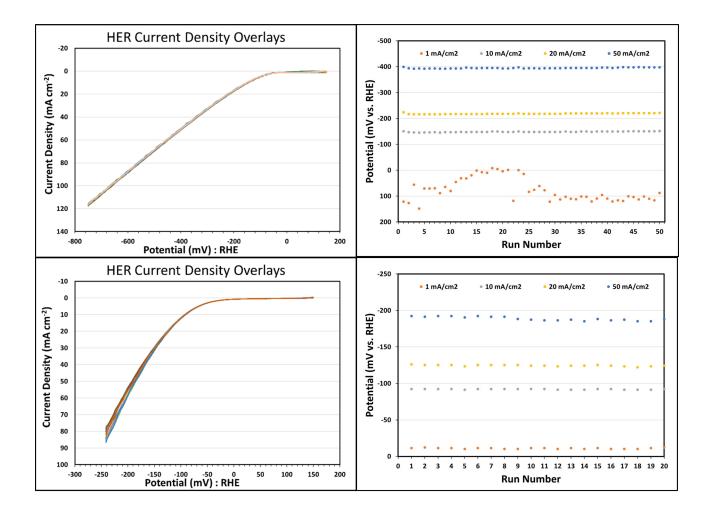
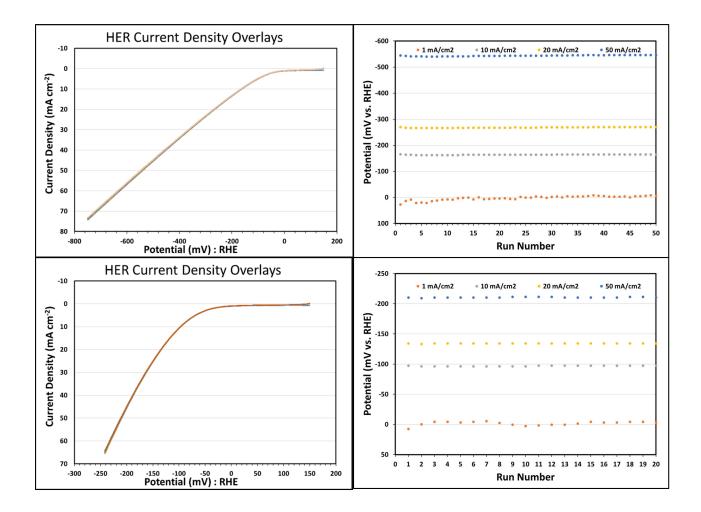


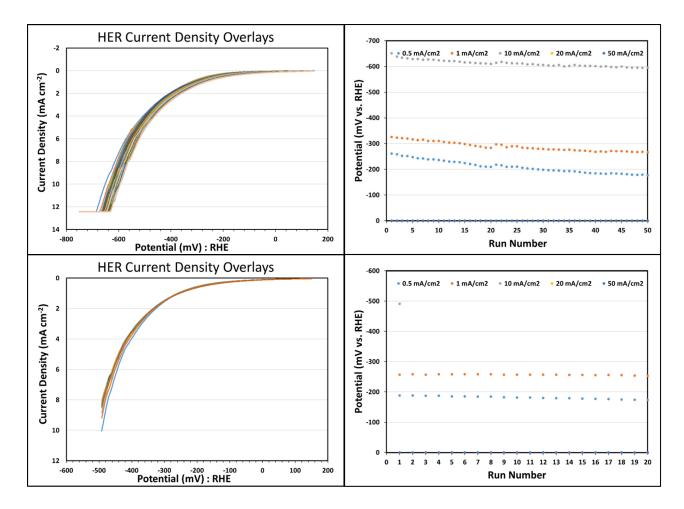
Figure S7. EDS elemental maps of (C) 10-CoP₃/C and (D) 5-CoP₃/C.

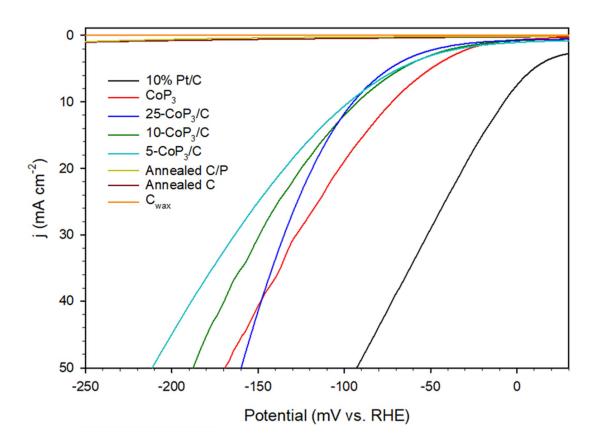



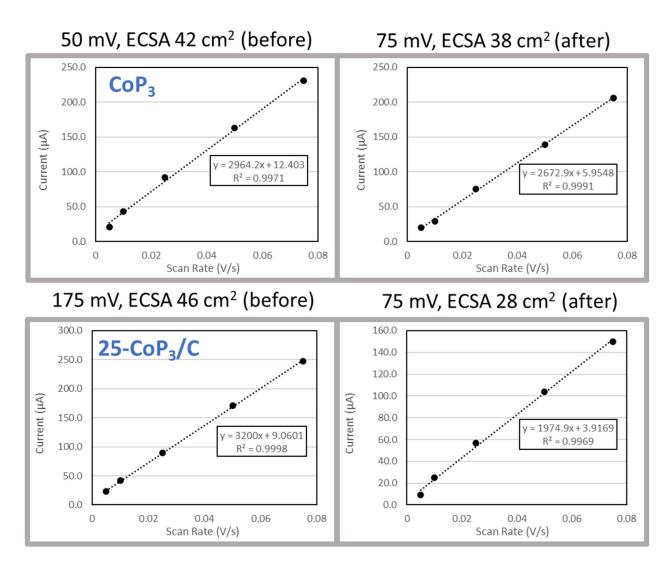

Figure S8. (A) EDS elemental maps and (B) analysis of annealed carbon black with phosphorous.

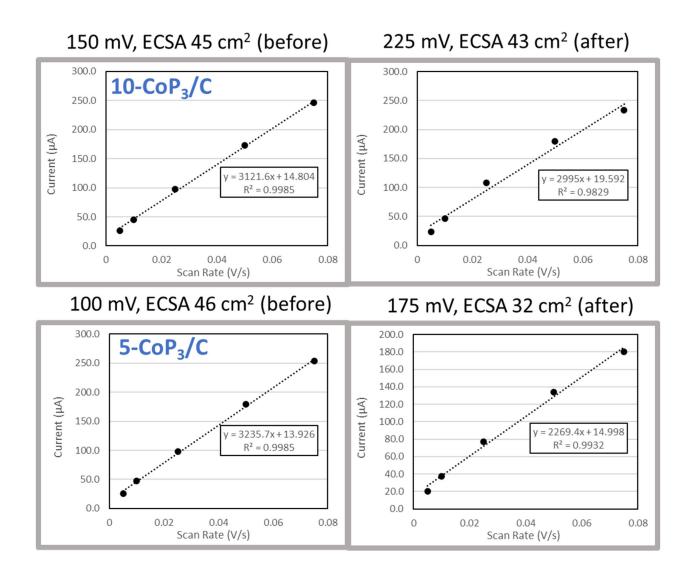

Figure S9. 50-point BET full isotherms of annealed carbon black with or without phosphorus, CoP₃ and x-CoP₃/C (x = 5, 10, 25) materials.


Figure S10. Left column: Overlay plots of iR uncompensated (50 LSV runs, top) and 85% iR compensated (20 LSV runs, bottom) of CoP₃ for HER experiments in 0.5 M H_2SO_4 at 5 mV/s scan rate. Right column: Plots of run number versus applied potentials to produce 1, 10, 20, 50 mA/cm² current densities using the LSV overlap plots shown in the left column.


Figure S11. Left column: Overlay plots of iR uncompensated (50 LSV runs, top) and 85% iR compensated (20 LSV runs, bottom) of 25-CoP₃/C for HER experiments in 0.5 M H_2SO_4 at 5 mV/s scan rate. Right column: Plots of run number versus applied potentials to produce 1, 10, 20, 50 mA/cm² current densities using the LSV overlap plots shown in the left column.


Figure S12. Left column: Overlay plots of iR uncompensated (50 LSV runs, top) and 85% iR compensated (20 LSV runs, bottom) of 10-CoP₃/C for HER experiments in 0.5 M H_2SO_4 at 5 mV/s scan rate. Right column: Plots of run number versus applied potentials to produce 1, 10, 20, 50 mA/cm² current densities using the LSV overlap plots shown in the left column.


Figure S13. Left column: Overlay plots of iR uncompensated (50 LSV runs, top) and 85% iR compensated (20 LSV runs, bottom) of 5-CoP₃/C for HER experiments in 0.5 M H_2SO_4 at 5 mV/s scan rate. Right column: Plots of run number versus applied potentials to produce 1, 10, 20, 50 mA/cm² current densities using the LSV overlap plots shown in the left column.


Figure S14. Left column: Overlay plots of iR uncompensated (50 LSV runs, top) and 85% iR compensated (20 LSV runs, bottom) of carbon black annealed with phosphorus for HER experiments in 0.5 M H_2SO_4 at 5 mV/s scan rate. Right column: Plots of run number versus applied potentials to produce 1, 10, 20, 50 mA/cm² current densities using the LSV overlap plots shown in the left column.

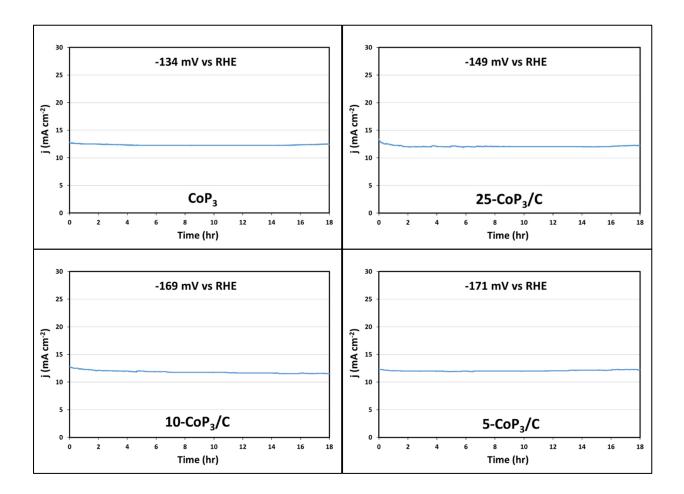
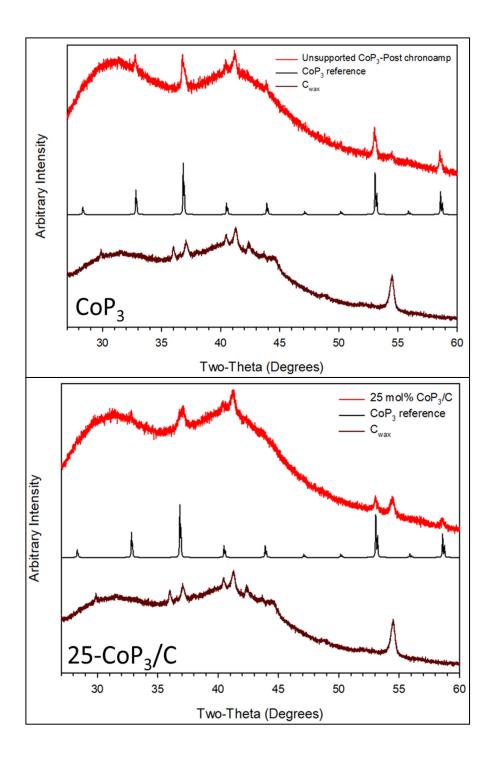
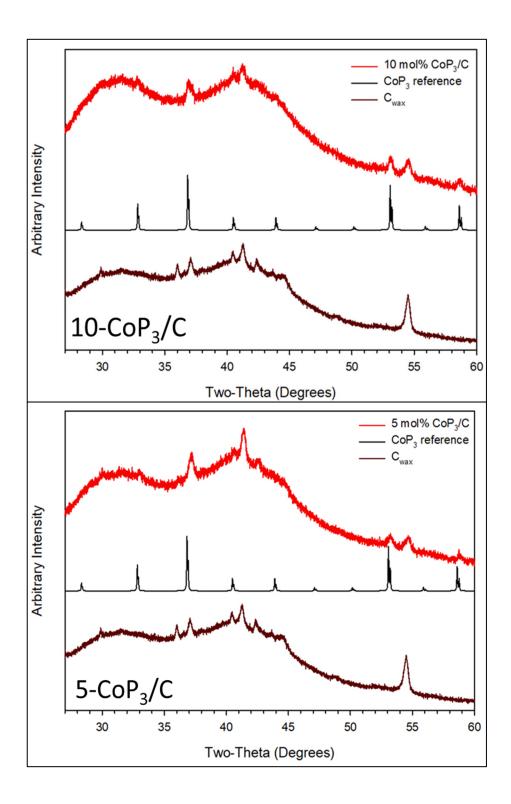
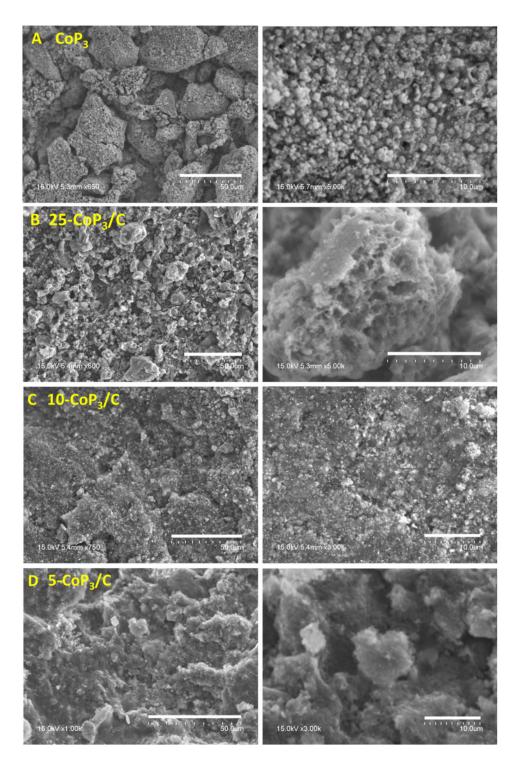
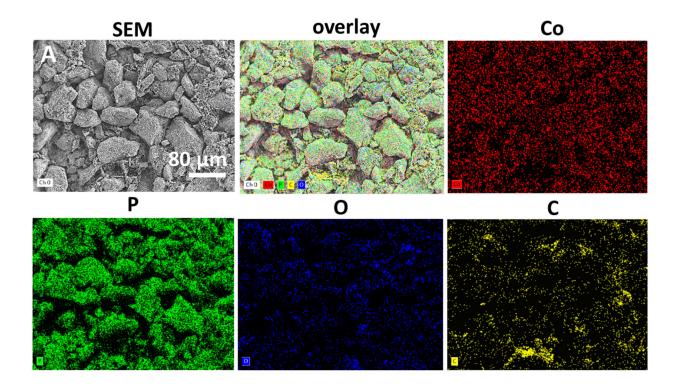

Figure S15. Representative 85% *iR* compensated LSV overlay plot of HER results for CoP₃, x-CoP₃/C (x = 5, 10, 25) and carbon black annealed with phosphorus.

Figure S16. Analysis of scan rate data from CV runs to calculate ECSA values before and after 50 LSV scans (*iR* uncompensated) for CoP₃ and 25-CoP₃/C materials from Table 2.


Figure S17. Analysis of scan rate data from CV runs to calculate ECSA values before and after 50 LSV scans (*iR* uncompensated) for $10-CoP_3/C$ and $5-CoP_3/C$ materials from Table 2.


Figure S18. 18-hour constant potential chronoamperometry (CA) HER experiments for CoP_3 and x-CoP₃/C (x = 5, 10, 25) catalysts using a platinum counter electrode.


Figure S19. 18-hour constant potential chronoamperometry (CA) HER experiments for CoP_3 and x-CoP₃/C (x = 5, 10, 25) catalysts using graphite rod counter electrode.


Figure S20. XRD results of CoP_{3} , and 25-CoP₃/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments.

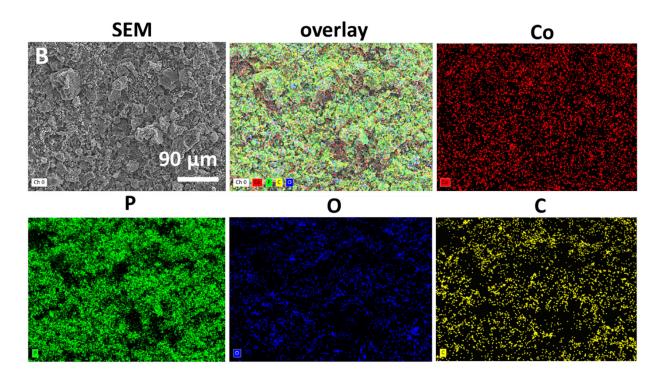
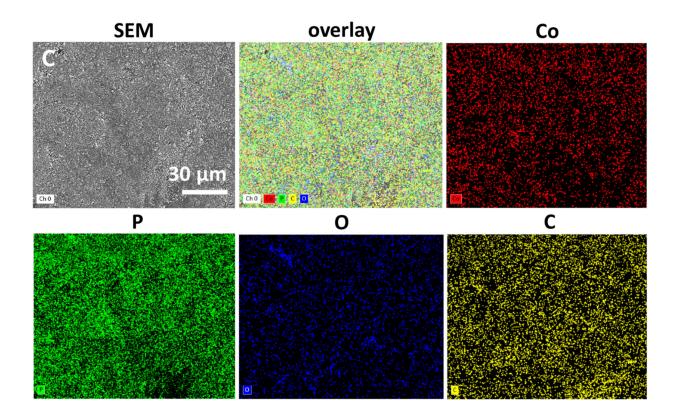


Figure S21. XRD results of 10-CoP₃/C and 5-CoP₃/C materials embedded on C_{wax} tips before and after 18-hour constant potential chronoamperometry (CA) HER experiments.



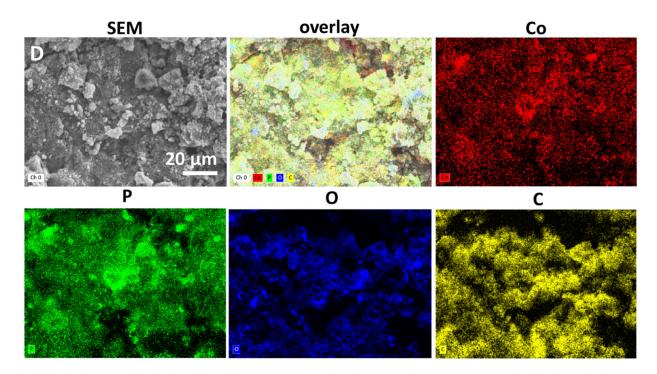
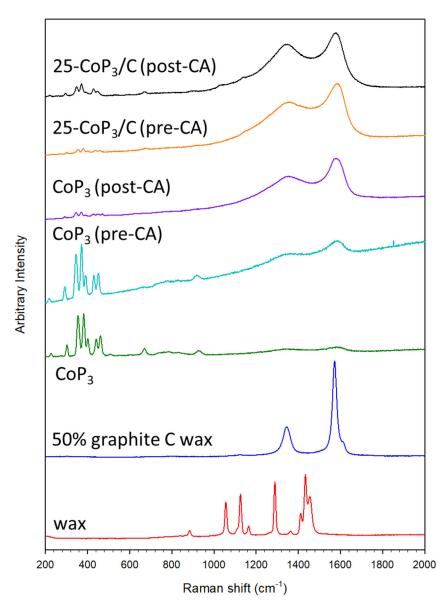

Figure S22. Scanning electron microscopy (SEM) images of (A) CoP_3 , (B) 25- CoP_3/C , (C) 10- CoP_3/C , and (D) 5- CoP_3/C embedded on a C_{wax} electrode tip after 18-hour CA HER experiments.

Figure S23. EDS maps of (A) CoP₃ and (B) 25-CoP₃/C embedded on C_{wax} electrode tips after 18-hour CA HER experiments.



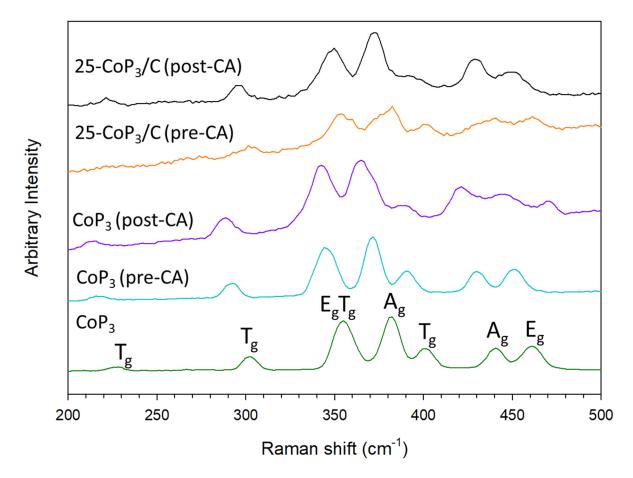

Figure S24. EDS maps of (C) 10-CoP₃/C and (D) 5-CoP₃/C embedded on C_{wax} electrode tips after 18-hour CA HER experiments.

Table S1. EDS compositional analysis of CoP_3 , and x-CoP₃/C materials embedded on C_{wax} tips after 18-hour constant potential chronoamperometry (CA) HER experiments.

Sample	Co (at%)	P (at%)	O (at%)	C (at%)
CoP ₃	6.8	13.8	34.6	44.8
25-CoP ₃ /C	6.2	12.2	30.5	51.1
10-CoP ₃ /C	3.8	8.4	21.0	66.8
5-CoP ₃ /C	1.0	2.3	8.7	88.0

Figure S25. Raman spectra of CoP_3 and 25- CoP_3/C materials embedded on C_{wax} tips before 18-hour constant potential chronoamperometry (pre-CA) and after CA (post-CA) HER experiments in the region of 200-2000cm⁻¹.

Figure S26. Raman spectra of CoP_3 and 25- CoP_3/C materials embedded C_{wax} tips before 18-hour constant potential chronoamperometry (pre-CA) and after CA (post-CA) HER experiments in a zoomed in region of 200-500 cm⁻¹.

Table S2. Literature comparison table for carbon-supported cobalt phosphides HER in 0.5 M H₂SO₄. All current densities are normalized for the geometrical surface area of the electrode. a) Values estimated from plots and graphical data in reference. GCE = Glassy carbon electrode, NRs = Nanorods, NPs = Nanoparticles, CNTs = Carbon nano tubes, NCNT = N-doped CNTs, NCNW = N-doped bundled carbon nanowires, PNC = P, N co-doped carbon, NWs = Nanowires, RGO = Reduced Graphene Oxide, NAs = nanoarrays, CP = Concave Polyhedrons, CFP = Carbon Fiber Paper.

Supported Cobalt	Electrode,	10 mA/cm ²	20 mA/cm ²	Tafel	Ref.
phosphide	Geometric	(mV)	(mV)	slope	
	area (cm ²)			(mV/dec)	
Co ₂ P NRs	Ti foil (0.5)	-134	-167	52	1
Co ₂ P NPs	Ti foil (0.2)	-95	-109	45	2
Co ₂ P/CNT	GCE (0.09)	-195	-219	74	3
Co ₂ P/NCNT	GCE (0.09)	-170 ^a	-190 ^a	62	3
CoP/NCNWs	GCE (0.09)	-95	-120 ^a	50	4
CoP@PNC	GCE (0.09)	-84	-110 ^a	57	4
CoP/CNT	GCE (0.09)	-122	-180 ^a	54	3
CoP/CNT	GCE (0.09)	-165	-198	68	3
CoP/NCNT	GCE (0.09)	-79	-99	49	3
CoP NPs	Ti foil (0.2)	-75	-85	50	5
CoP NWs	GCE (0.09)	-110	-142	54	6
CoP	CC (6)	-67	-100	51	7
CoP/RGO	GCE (0.09)	-157	-190 ^a	70	8
CoP ₂	GCE (0.09)	-120	-150 ^a	73	9
CoP ₂ /RGO	GCE (0.09)	-88	-106 ^a	50	9
CoP ₃ NAs	CFP (5.4)	-65	-100 ^a	46	10
CoP ₃ CPs	CFP (0.25)	-78	-110 ^a	53	11

REFERENCES

- 1. Z. P. Huang, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, 9, 373-382.
- J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, 27, 3769-3774.
- 3. Y. Pan, Y. Lin, Y. J. Chen, Y. Q. Liu and C. G. Liu, J. Mater. Chem. A, 2016, 4, 4745-4754.
- 4. X. R. Tang, N. Li and H. Pang, Green Energy Environ., 2022, 7, 636-661.
- 5. E. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis and R. E. Schaak, *Angew. Chem. Int. Ed.*, 2014, **53**, 5427-5430.
- P. Jiang, Q. Liu, C. J. Ge, W. Cui, Z. H. Pu, A. M. Asiri and X. P. Sun, *J. Mater. Chem. A*, 2014, 2, 14634-14640.
- 7. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 8. M. Li, X. T. Liu, Y. P. Xiong, X. J. Bo, Y. F. Zhang, C. Han and L. P. Guo, *J. Mater. Chem. A*, 2015, **3**, 4255-4265.
- 9. J. M. Wang, W. R. Yang and J. Q. Liu, J. Mater. Chem. A, 2016, 4, 4686-4690.
- 10. T. L. Wu, M. Y. Pi, D. K. Zhang and S. J. Chen, J. Mater. Chem. A, 2016, 4, 14539-14544.
- 11. T. Wu, M. Pi, X. Wang, D. Zhang and S. Chen, *Phys. Chem. Chem. Phys.*, 2017, **19**, 2104-2110.