Compositionally Variant Bimetallic Cu-Mn Oxysulfide Electrodes with Meritorious Supercapacitive Performance and High Energy Density

Heba M. El Sharkawy^a, Abdussalam M. Elbanna^{b,#}, Ghada E. Khedr^{a,#} and Nageh K. Allam^{b*}

^a Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt

^b Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt

* Corresponding Author's email: nageh.allam@aucegypt.edu

Figure S1: XRD patterns of (a) C_1M_3OS , (b) C_1M_1OS , and (c) C_3M_1OS nanocomposites with their corresponding reference cards.

Figure S2: X-ray photoelectron spectroscopy survey scan of the C₃M₁OS nanocomposite.

Figure S3: Three-electrode electrochemical measurements: (a) CV profile of C_1M_1OS at various scan rates (5–100 mV/s), The reliance of cathodic and anodic currents on the applied scan rate for (b) C_1M_1OS , (c) C_1M_3OS , and (d) specific capacitance recorded at different several scan rates for C_1M_3OS , C_1M_1OS , and C_3M_1OS electrodes in 2 M KOH.

The electrochemical active surface area (ECSA) was calculated from a series of cyclic voltammograms in the non-faradaic region at different scan rates (3–100 mV/s), as shown in Fig.

7a. The ECSA values can be obtained using the equation $ECSA = \frac{C_{DL}}{C_s}$, where Cs is the specific capacitance of a flat surface of the material per unit area. This specific capacitance is usually between 20 and 60 µF/cm² for metal-based materials in alkaline electrolytes; the average value of 40 µF/cm² is usually used and Cdl is the electrochemical double-layer capacitance of the Flat surface. ^{1–3} Based on the obtained Cdl values from the slopes in **Figure S4 b,d,f**, the ESCA was found to be 32, 25, and 17 cm² C₃M₁OS, C₁M₁OS, and C₁M₃OS electrodes , respectively. Confirming the superior activity of the fabricated composites and the outstanding electrochemical performance of the C₃M₁OS electrode.

Figure S4: The electrochemical surface area measurements: cyclic voltammograms at different scan rates (3-100) mV/s, anodic and cathodic currents as a function of scan rate of the (a, b) C₃M₁OS, (c, d) C₁M₁OS, and (e, f) C₁M₃OS electrodes.

Figure S5: Three-electrode electrochemical measurements: (a) specific capacity of the C_1M_3OS , C_1M_1OS , C_3M_1OS and C_4M_0OS electrodes at a current density of 1 A/g. (b) CV profiles at various scan rates (5–100 mV/s), and (c) GCD profiles at various current densities (2–10 A/g) of C_4M_0OS electrode.

Figure S6: Three-electrode electrochemical measurements: (a) specific capacity of the C_1M_3OS , C_1M_1OS , C_3M_1OS , C_4M_0OS and C_0M_4OS electrodes at a current density of 1 A/g. (b) CV profiles at various scan rates (5–100 mV/s), and (c) GCD profiles at various current densities (2–10 A/g) of C_0M_4OS electrode.

Material characterization of C₃M₁OS electrode after cycling

As for the morphology of the electrode after cycling, SEM image (**Figure S7a**) showed the retaining of the nanocube-like structure covered with nanoneedles with the presence of some aggregates. Additionally, EDX and XPS analysis shown in **Figure S7b,c** confirmed the presence of all chemical elements (Cu, Mn, S, and O) after cycling, demonstrating the stability of the C₃M₁OS electrode.

Figure S7: (a) field-emission scanning electron microscopy (FESEM) image, (b) the EDX spectrum and (c) X-ray photoelectron spectroscopy survey scan of C_3M_1OS electrode after cycling.

Figure S8: Electrochemical characteristics of $C_3M_1OS//AC$ asymmetric device: (a) Nyquist plots for the designed device.

Table S1 Bader net atomic charge

Element	C ₁ M ₃ OS	C ₁ M ₁ OS	C ₃ M ₁ OS
Cu	0.413269	0.480593	0.514096
Cu		0.490029	0.532672
Cu			0.895732
Mn	1.041738	1.61466	1.75898
Mn	1.577323	1.614569	
Mn	1.577179		
0	-1.329480	-1.268808	-1.117837
0	-1.329707	-1.268761	-1.117261
S	-0.975155	-0.831103	-0.712779
S	-0.975167	-0.83118	-0.753602
No of electrons	56	60	64

Bader net atomic charge =ZVAL-Bader population