SUPPORTING INFORMATION

Co-Prussian blue analogue supported on graphene-based material as electrocatalyst for oxygen evolution reaction under neutral pH

Rafael G. Yoshimura^a, Thiago V. de B. Ferraz^a, Priscilla J. Zambiazi^a, Juliano A. Bonacin*^a

^aInstituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil 6154, 13084-971, Campinas, SP, Brazil

*jbonacin@unicamp.br (e-mail of the corresponding author)

ORCID ID: 0000-0001-9399-1031

Sample	D band (cm ⁻¹) G band (cm	
GO	1349	1600
r_GO	1346	1592
r_GO_N1	1348	1596
r_GO_N2	1348	1593
r_GO_N3	1348	1593

Table S1. The positions of the D and G bands on Raman spectra of the graphene-based samples.

Figure S1. A schematic structure view of Co-PBA.

Figure S2. Cyclic voltammograms at different scan rates (500 to 5 mV.s⁻¹) to determine the electroactive surface area (ECSA) and heterogenous rate constant (k_{obs}) in a solution containing 5mmol.L⁻¹ [Ru(NH₃)₆]³⁺ as redox probe and 0.1 mol.L⁻¹ KNO₃ as support electrolyte. (A) Co-PBA (B) GO, (C) r_GO, (D) r_GO N1, (E) r_GO N2 and (F) r_GO N3.

Electrocatalyst	Electrolyte	$\mathbf{\eta} J_{10} (mV)$	Tafel slope (mV dec ⁻¹)	Ref
Co-PBA + r_GO N2	0.1 M KNO ₃	926	180	This work
Co-Fe PBA	0.5 M KNO ₃	970	151	1
Co-PBA	0.1 M Kpi	1141	155	2
Co_3O_4	0.1 M Kpi	931	138	2
$Ni(S_{0.5}Se_{0.5})_2$	1.0 M PBS	640	94	3
CoP	1.0 M PBS	536	85	4
Co ₃ O ₄ + graphene	0.1 M PBS	498	98	5
S-NiFe ₂ O ₄	1.0 PBS	494	118	6

Table S2. Comparison of some electrocatalysts for OER under mild conditions

References

[1] R. Germscheidt, D. Francischini, M. Silva, M. Arruda, A. Formiga, T. Rocha, J. Bonacin. *ACS Appl. Energy Mater.*, 2022, **5**, 9447–9454.

[2] P. Zambiazi, G. Aparecido, T. Ferraz, W. Skinner, R. Yoshimura, D. Moreira, R.

Germscheidt, L. Nascimento, A. Patrocinio, A. Formiga, J. Bonacin. *Dalton Trans.*, 2020, **49**, 16488–16497.

[3] L. Zeng, K. Sun, Y. Chen, Z. Liu, Y. Chen, Y. Pan, R. Zhao, Y. Liu, C. Liu. J. *Mater. Chem. A*, 2019, **7**, 16793.

[4] T. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun, L. Chen. *ChemElectroChem*, 2017, 4, 1840.

[5] Y. Zhao, S. Chen, B. Sun, D. Su, X. Huang, H. Liu, Y. Yan, K. Sun, G. Wang, *Sci. Rep.*, 2015, **5**, 7629.

[6] J. Liu, D. Zhu, T. Ling, A. Vasileff, S. Qiao. Nano Energy, 2017, 40, 264.