Supporting Information

Gas-fed Photoelectrochemical Reactions Sustained by Phosphotungstic Acid as an Inorganic Surface Electrolyte

Fumiaki Amano^{1*}, Keisuke Tsushiro^{1,2}, Chiho Akamoto²

¹ Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan

² Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

*Corresponding author

Fumiaki Amano: f.amano@tmu.ac.jp

Photoanode	IPCE (%) ^c	H ₂ FE (%) d	O ₂ FE (%) ^e
PFSA/WO3 ^b	2.4	93.6	84.8
PWA/WO ₃ ^b	2.8	99.4	94.8

Table S1. Vapor-fed PEC water splitting at 1.2 V (vs. Pt-CB) under visible light for 20 h^a

 a Wavelength 453 nm, Irradiance 12 mW cm $^{-2}$, and area 16 cm 2

^b Surface electrolyte loading 5 wt%

^c Incident photon-to-current conversion efficiency, which was calculated by subtracting the dark current from the current density just before the light is turned off.

^d Faradaic efficiency of H₂ evolution on the cathode side

^e Faradaic efficiency of O₂ evolution on the photoanode side

Photoanode	Reaction	C (mass%)	O (mass%)	F (mass%)	S (mass%)	Ti (mass%)	W (mass%)
PFSA/WO3 ^b	Before	14.2	10.3	36.5	0.18	22.1	16.7
	After	9.3	17.5	18.5	0.13	21.8	32.8
Photoanode	Reaction	0	Р	Ti	W		
		(mass%)	(mass%)	(mass%)	(mass%)		
PWA/WO ₃ ^b	Before	29.0	0.29	25.8	44.9		
	After	25.6	0.31	20.5	53.6		

Table S2. SEM-EDS analysis of the functionalized WO₃ photoanodes before and after the long-term vapour-fed PEC water splitting at 1.2 V (vs. Pt-CB) under visible light for 20 h^a

 a Wavelength 453 nm, Irradiance 12 mW cm $^{-2}$, and area 16 cm 2

^b Surface electrolyte loading 5 wt%

Table S3. Gas-phase PEC methane conversion at 1.2 V (vs. Pt-CB) under visible light irradiation(Fig.7) a

	IPCE	H ₂ FE	FE in photoanode (%)				Selectivity (%, C-basis)			
Photoanode	(%)	(%)	O ₂	C ₂ H ₆	CO ₂	СО	Sum	C ₂ H ₆	CO ₂	СО
PFSA/WO ₃ ^b	6.3	99.5	15.7	8.6	63.2	2.7	90.2	50.5	46.7	2.8
PWA/WO ₃ ^c	7.1	101	2.5	10.5	71.3	9.2	93.9	50.0	42.3	7.6

 $^{\it a}$ Wavelength 453 nm, Irradiance 22 mW cm $^{-2}$, and area 2 cm 2

^b PFSA loading 12 wt%

^c PWA loading 5 wt%

Figure S1. SEM images of the porous WO₃ electrode functionalized by PWA coating (PWA/WO₃).

Figure S2. Cyclic voltammetry curves of the Pt-CB electrocatalyst in 0.1 M H₂SO₄ electrolyte (pH 1.0) at a scan rate of 10 mV s⁻¹ with and without *iR* compensation. The series resistance between the working and reference electrodes was measured by electrochemical impedance spectroscopy analysis.

Figure S3. SEM-EDS mapping images of the PWA/WO₃ photoanode after the long-term vapour-fed PEC water splitting for 20 h.

Figure S4. Raman spectra of (a) bare WO₃, (b) PWA/WO₃, and (c) PWA/WO₃ after the long-term vapor-fed PEC water splitting for 20 h.

Figure S5. Vapour-fed PEC water splitting of PFSA/WO₃ and PWA/WO₃ photoanodes under UV light (wavelength 385 nm, irradiance 60 mW cm⁻², irradiation area 2 cm²) at an applied voltage of 1.2 V (vs. Pt-CB cathode). Carrier gas: Ar, Flow rate: 20 mL min⁻¹, Water vapour: 3 kPa, Temperature: 25 °C.