Supporting Information

Ag/Pd bimetallic nanoparticles loaded Zr-MOF: An efficacious visible light responsive photocatalyst towards H₂O₂ and H₂ production

Srabani Dash^a, Suraj Prakash Tripathy^a, Satyabrata Subudhi^a, Lopamudra Acharya^a, Asheli Ray^a, Pragyandeepti Behera^a, Kulamani Parida^a* ^a Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be

University), Bhubaneswar, Odisha, 751030, India

(*Corresponding Author)

(The following electronic supporting information contains 8 pages, 04 tables, and 5 figures.)

* Corresponding author E-mail: paridakulamani@yahoo.com, kulamaniparida@soa.ac.in, Tel. No. +91-674-2351777, Fax. +91-674-2350642

1. Experimental Techniques:

1.1. Characterization Techniques:

The powder X-ray diffraction (PXRD) analysis was carried out by using Rigaku Ultima-IV (40 kV-40 mA) which is connected with Cu K α source having radiation ($\lambda = 0.154$ nm) at 2 θ range $(5^{\circ}-80^{\circ})$ to detect the crystallinity and phase purity properties of the material. Fourier transform infrared (FTIR) spectrometer analysis was carried out with JASCO FTIR-4600-LE taking KBr (potassium bromide) as reference for interpretation of the functional groups of synthesized materials between the range of 4000-400 cm⁻¹. To determine the oxidation states and chemical composition of the materials X-ray photoelectron spectroscopy (XPS) analysis was performed by VG-microtech-multilab-ESCA-3000 spectrometer (Mg-K-X-ray non-monochromatized source). By the Brunaure-Emmett-Teller (BET) surface area analysis and the N2 adsorptiondesorption evaluation materials textural properties were measured using NOVA-2200e Quantachrome analyser. The surface morphology was analyzed by scanning electron microscopy (SEM) with 200 kV JEOL-JEM-2100 that was coupled with energy-dispersive Xray (EDS) and elemental mapping analysis apparatus respectively and the internal topology of the produced photocatalysts, were analyzed through transmission electron microscopy (TEM) by ZEISS SUPRA-55. The optical characteristics of the synthesized samples were measured using a JASCO-V-750 UV-Visible spectrophotometer with BaSO₄ reference in the wavelength range (200-800 nm). The excitation and emission spectra of photoluminescence (PL) were measured using a JASCO FP-8300 fluorescence spectrometer using Xenon lamp as the light source with an excitation wavelength of 325 nm. The TRPL analysis was carried out by Edinburgh-FLS920 Fluorescence spectrometer which is coupled with a multi-channel scaling (MCS) module fitted to the F290H pulsed Xe microsecond flash lamp source. Electrochemical properties of the prepared materials were characterized by using IVIUMnSTAT multi-channel analyzer. Furthermore, Agilent Technology gas-chromatography was used to analyze the evolution of H₂ (GC-7890B). An ICP-OES elemental analyzer (Elementar Vario EL III Carlo Erba 1108) was used to determine the loading percentage of the elements present.

1.2. FTO Preparation: Additionally, the prepared materials were dropcastingly deposited on the fluorine-dopped tin oxide (FTO) glass. Firstly, the FTO glasses were ultrasonically washed with DI and ethanol for 20 min each and then dried at 75 °C. The suspension which comprised of distilled water (1.6 mL), ethanol (1.4 mL) and Nafion (40 μ L) was uniformly coated on the conducting surface of FTO. The Ag/AgCl taken as reference electrode, Pt electrode used as

counter electrode, and the sample coated FTO as working electrode were installed three electrode based electrochemical cell and by taking Na_2SO_4 (0.2 M) as electrolyte.

1.3. Scavenger Test Procedure: Radical scavenger tests were carried out to clarify the reactive species in charge of the production of H_2O_2 by (1:2) Ag/Pd@UiO-66-NH₂ under light illumination. These experiments are depicted in (Fig. S4) The influence of O_2^- , OH, h⁺, and e⁻ species on photocatalytic H_2O_2 formation was investigated using 1,4-benzoquinone (PBQ), isopropanol (IPA), citric acid (CA), and dimethyl sulfoxide (DMSO), in that order. When PBQ and DMSO were introduced to the photocatalytic system, the yield of H_2O_2 was dramatically reduced, confirming the considerable contribution of both O_2^- and e⁻ via indirect and direct O_2 reduction routes. Also, the addition of IPA showed a significant impact on H_2O_2 production which exhibit the remarkable role of OH radicals. Moreover, the significant H_2O_2 yield delay caused by the addition of CA showed a minor involvement of h⁺ radicals as reactive intermediate species during the photocatalytic H_2O_2 production process.

Fig. S2: Survey XPS spectrum of pristine UiO-66-NH₂ and composite (1:2) Ag/Pd@UiO-66-NH₂

Fig. S3: PL plot for pristine UiO-66-NH₂ and (1:1, 1:2, 2:1) Ag/Pd@UiO-66-NH₂

Fig. S4: TRPL plot of (1:2) Ag/Pd@UiO-66-NH₂

Fig. S5: LSV plot of the prepared photocatalysts

Fig. S6: Post photo-catalytic PXRD analysis

Table S1: TRPL fitting data and average life times of the prepared MOFs

Sample Name	τ_1	τ_2	A1	A2	$ au_{avg}$	Ref.
UiO-66-NH ₂	0.36	4.81	6600.48	16.40	0.504	1
(1:2) Ag/Pd@UiO-66- NH ₂	0.81	6.82	63.6	21.76	0.537	This study

Table S2: Apparent Conversion Efficiency (ACE) Expression and Calculation for

 photocatalytic hydrogen evolution by the prepared photocatalysts

ACE Expression	ACE Value
stored chemical energy (SCE)	ACE _(UNH) : 0.88 %
ACE $(H_2) =$ incident light intensity (ILI)	
ACE $(H_2) =$	
moles of H produced (in μ mol/s) $\times \Delta H$	ACE _{(1:2)Ag/Pd@UiO-66-NH2} : 3.30 %
$150 mW cm^{-2} \times (area of the spherical surface on whether the spherical surface on whether the spherical surface on whether the sphere sphe$	
$[\Delta H_c = \text{Heat of Combustion (kJ mol-1) for } H_2 = 2H^+ + \frac{1}{2}$	
O_2 ; $\Delta H_c = 285.8 \text{ kJ mol}^{-1}$, r = Circle radius = 1.5 cm.]	

Sl. No.	Material Name	Light Source	H ₂ O ₂ Production	Ref.
1.	Hexagonal rosettes g-	Visible light ($\lambda > 420 \text{ nm}$)	150 µmol h ⁻¹ g ⁻¹	2
	C_3N_4			
2.	CoP/g-C ₃ N ₄	Visible light ($\lambda > 420 \text{ nm}$)	140 µmol in 2 h	3
3.	PEI/g-C ₃ N ₄	Visible light ($\lambda > 420 \text{ nm}$)	208.1 µmol h ⁻¹ g ⁻¹	4
4.	Bi ₄ O ₅ Br ₂ /g-C ₃ N ₄	Visible light ($\lambda > 420 \text{ nm}$)	124 μmol h ⁻¹	5
5.	CdS/rGO	Sun light	164 μmol h ⁻¹	6
6.	Ti ₃ C ₂ /TiO ₂	Visible light ($\lambda > 420 \text{ nm}$)	179.7 μmol L ⁻¹ h ⁻¹	7
7.	Ag/ZnFe ₂ O ₄ -Ag-Ag ₃ PO ₄	Visible light ($\lambda > 420 \text{ nm}$)	206.3 μmol L ⁻¹	8
8.	O-CNC	Visible light ($\lambda > 420 \text{ nm}$)	2008.4 µmol h ⁻¹ g ⁻¹	9
9.	DCN-15A	Visible light ($\lambda > 420 \text{ nm}$)	12.1 μmol h ⁻¹	10
10.	(1:2) Ag/Pd@UiO-66-	Visible light ($\lambda > 420 \text{ nm}$)	39.4 µmol h ⁻¹	This
	NH ₂			study

Table S3: Comparative table for photocatalytic H_2O_2 production by various photocatalysts

Table S4: Comparative table for photocatalytic H_2 evolution by various photocatalysts

Sl. No.	Material Name	Light Source	H ₂ Production	Ref.
1.	NU66/ZIS	300 W Xe lamp ($\lambda \ge 420$ nm)	2199 µmol h ⁻¹ g ⁻¹	11
2.	Pt@UiO-66- NH ₂ @ZnIn ₂ S ₄	300 W Xe lamp ($\lambda \ge 420$ nm)	850 μmol h ⁻¹ g ⁻¹	12
3.	Au ₄ @UiOS@ZIS	300 W Xe lamp ($\lambda \ge 420$ nm)	391 μmol h ⁻¹	13
4.	PtNi/g-C ₃ N ₄	300 W Xe lamp ($\lambda \ge 420$ nm)	104.7 μmol h ⁻¹	14
5.	Ag-Pd/ZIS	300 W Xe lamp (λ≥420 nm)	125.4 µmol h ⁻¹	15

	NH ₂			study
10.	(1:2) Ag/Pd@UiO-66-	300 W Xe lamp/Visible Light	448.2 μmol h ⁻¹	This
9.	CdS/PdAg/g-C ₃ N ₄	300 W Xe lamp ($\lambda \ge 420$ nm)	3098.3 µmol h ⁻¹ g ⁻¹	19
8.	Au/g-C ₃ N ₄	Visible light ($\lambda \ge 420 \text{ nm}$)	423.1 μmol h ⁻¹	18
7.	AuPd/g-C ₃ N ₄	Visible light ($\lambda \ge 420 \text{ nm}$)	2145 mmol h ⁻¹ g ⁻¹	17
6.	Cu-Pt/SrTiO3	Visible Light ($\lambda \ge 420 \text{ nm}$)	369.4 μmol h ⁻¹	16

References:

- 1 S. P. Tripathy, S. Subudhi, A. Ray, P. Behera, J. Panda, S. Dash and K. Parida, J Colloid Interface Sci, 2023, 629, 705–718.
- 2 T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B. K. Lee, S. Bae and J. Ryu, *J Colloid Interface Sci*, 2021, **597**, 345–360.
- 3 Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei and J. Zhang, *Eur J Inorg Chem*, 2017, 2017, 4797–4802.
- 4 X. Zeng, Y. Liu, Y. Kang, Q. Li, Y. Xia, Y. Zhu, H. Hou, H. Uddin, T. R. Gengenbach, D. Xia, C. Sun, D. T. Mccarthy, A. Deletic, J. Yu and X. Zhang, *ACS Catal.* 2020, **6**, 3697–3706.
- 5 X. Zhao, Y. You, S. Huang, Y. Wu, Y. Ma, G. Zhang and Z. Zhang, *Appl Catal B*, 2020, **278**, 119251.
- 6 X. Li, D. Chen, N. Li, Q. Xu, H. Li and J. Lu, *J Colloid Interface Sci*, 2023, **648**, 664–673.
- 7 Y. Chen, W. Gu, L. Tan, Z. Ao, T. An and S. Wang, *Appl Catal A Gen*, 2021, **618**, 118127.
- X. Ma and H. Cheng, *Chemical Engineering Journal*, 2022, **429**, 132373.
- 9 H. Xie, Y. Zheng, X. Guo, Y. Liu, Z. Zhang, J. Zhao, W. Zhang, Y. Wang and Y. Huang, *ACS Sustain Chem Eng*, 2021, **9**, 6788–6798.
- 10 L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin, X. Hai, H. Song and J. Ye, *Small*, 2018, **9**, 1703142.
- 11 C. Zhao, Y. Zhang, H. Jiang, J. Chen, Y. Liu, Q. Liang, M. Zhou, Z. Li and Y. Zhou, *Journal of Physical Chemistry C*, 2019, **123**, 18037–18049.

- 12 L. Wang, Y. Zhao, B. Zhang, G. Wu, J. Wu and H. Hou, *Catal Sci Technol*, 2023, **13**, 2517–2528.
- 13 S. Mao, J. W. Shi, G. Sun, D. Ma, C. He, Z. Pu, K. Song and Y. Cheng, *Appl Catal B*, 2021, **282**, 119550.
- 14 W. Peng, S. S. Zhang, Y. B. Shao and J. H. Huang, *Int J Hydrogen Energy*, 2018, **43**, 22215–22225.
- 15 C. Liu, Y. Zhang, J. Wu, H. Dai, C. Ma, Q. Zhang and Z. Zou, *J Mater Sci Technol*, 2022, **114**, 81–89.
- 16 L. Qin, G. Si, X. Li and S. Z. Kang, *RSC Adv*, 2015, **5**, 102593–102598.
- 17 C. Han, Y. Gao, S. Liu, L. Ge, N. Xiao, D. Dai, B. Xu and C. Chen, *Int J Hydrogen Energy*, 2017, **42**, 22765–22775.
- 18 X. B. Qian, W. Peng and J. H. Huang, *Mater Res Bull*, 2018, **102**, 362–368.
- 19 J. Gao, F. Zhang, H. Xue, L. Zhang, Y. Peng, X. L. Li, Y. Gao, N. Li and G. Lei, *Appl Catal B*, 2021, 281, 119509.