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Supporting Figure 1. The total ion abundances of BCAII (blue) and cyt c (orange) as a function 

of (a) solution temperature and (b) laser power. Aggregation above ~72 C results in no BCAII 

signal and low cyt c signal in vT-ESI experiments, whereas high laser powers increase protein 

signal for both proteins before a sharp decrease in abundance of BCAII at laser powers >~3.3 W. 



S4

Supporting Figure 2. Small molecule/ion adduction to BCAII results in (a) charge states that 

tail to higher m/z before heating, but (b) significantly narrower charge states after heating and a 

return of the solution to room temperature indicating that a thermal cycle can significantly reduce 

adduction. A typical (c) extracted ion chromatogram (EIC) for the region of 2900 – 2950 m/z 

(the +10 charge state) demonstrates the time required for aggregated material to be expelled from 

the heated portion of the emitter and signal to return after laser heating at ~4 W. 
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Supporting Figure 3. The two-protein calibration procedure consists of (a) aligning the 

normalized change in the weighted average charge state of cyt c measured by vT-ESI and LH-

ESI to (b) determine the temperature in the tip at high laser powers. The BCAII melting curve (c) 

determined by LH-ESI (in yellow) was then mapped between room temperature and ~80 C 

(mapped function in blue) to generate (d) a linear calibration function for converting laser power 

to solution temperature. In contrast to a prior LH-ESI report where cyt c was used to establish a 

relationship between laser power and solution temperature,1 a linear temperature calibration is 
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generated here by “stretching” the sigmoidal fit for BCAII determined by LH-ESI between room 

temperature (27 C) and the maximum temperature in the tip before BCAII aggregation 

determined using cyt c unfolding (~80 C). The Tm values determined for BCAII and cyt c using 

this method are 63.4  0.6 C and 73.9  0.5 C, in excellent agreement with literature Tm values 

for these proteins.  
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Supporting Figure 4. Modeling the theoretical abundance of U originating from the BF  U 

pathway as a function of temperature using the difference between the summed abundance of the 

U that originates from the BU  U and F  U pathways and the measured abundance of U. 
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