Supporting Information

for

Overcoming Aggregation with Laser Heated Nanoelectrospray Mass Spectrometry:

Thermal Stability and Pathways for Loss of Bicarbonate from Carbonic Anhydrase II

Jacob S. Jordan, Katherine J. Lee, and Evan R. Williams*

Department of Chemistry, University of California, Berkeley, CA 94720

*To whom correspondence should be addressed

e-mail: <u>erw@berkeley.edu</u>

Contents

Figure S1. Abundances of cyt <i>c</i> and BCAII as a function of Laser Power or Solution Temperature Figure S2. Mass Spectra of BCAII Charge States Before and After	S3 S4
Figure S3. Two Protein Calibration Method for Converting Laser Power	S5
to Solution Temperature	
Figure S4. Modeling the Theoretical Abundance of U Originating from the BF→U Pathway	S7

Supporting Figure 1. The total ion abundances of BCAII (blue) and cyt *c* (orange) as a function of (a) solution temperature and (b) laser power. Aggregation above \sim 72 °C results in no BCAII signal and low cyt *c* signal in vT-ESI experiments, whereas high laser powers increase protein signal for both proteins before a sharp decrease in abundance of BCAII at laser powers >~3.3 W.

Supporting Figure 2. Small molecule/ion adduction to BCAII results in (a) charge states that tail to higher m/z before heating, but (b) significantly narrower charge states after heating and a return of the solution to room temperature indicating that a thermal cycle can significantly reduce adduction. A typical (c) extracted ion chromatogram (EIC) for the region of 2900 – 2950 m/z (the +10 charge state) demonstrates the time required for aggregated material to be expelled from the heated portion of the emitter and signal to return after laser heating at ~4 W.

Supporting Figure 3. The two-protein calibration procedure consists of (a) aligning the normalized change in the weighted average charge state of cyt *c* measured by vT-ESI and LH-ESI to (b) determine the temperature in the tip at high laser powers. The BCAII melting curve (c) determined by LH-ESI (in yellow) was then mapped between room temperature and ~80 °C (mapped function in blue) to generate (d) a linear calibration function for converting laser power to solution temperature. In contrast to a prior LH-ESI report where cyt *c* was used to establish a relationship between laser power and solution temperature,¹ a linear temperature calibration is

generated here by "stretching" the sigmoidal fit for BCAII determined by LH-ESI between room temperature (27 °C) and the maximum temperature in the tip before BCAII aggregation determined using cyt *c* unfolding (~80 °C). The T_m values determined for BCAII and cyt *c* using this method are 63.4 ± 0.6 °C and 73.9 ± 0.5 °C, in excellent agreement with literature T_m values for these proteins.

Supporting Figure 4. Modeling the theoretical abundance of U originating from the BF \rightarrow U pathway as a function of temperature using the difference between the summed abundance of the U that originates from the BU \rightarrow U and F \rightarrow U pathways and the measured abundance of U.

References

1 J. S. Jordan and E. R. Williams, *Anal. Chem.*, 2022, **94**, 16894–16900.