Supplementary Material

Molecularly imprinted polymer coated silica microbeads for high performance liquid chromatography

Wenpu Wu,^a Cuichi Yu,^a Lei Sui,^a Hui Xu,^{*a} Jinhua Li,^b Na Zhou,^b Lingxin Chen,^{*b,c}, Zhihua Song,^{*a}

a School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P. R. China

^b CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China

^c School of Pharmacy, Binzhou Medical University, Yantai, 264003, China

* Corresponding author.

Phone/Fax: +86-535-6706 066

E-mail addresses: xuhui33@sina.com, lxchen@yic.ac.cn (L. Chen), zhihuasong08@yeah.net (Z. Song)

Figure S1 Chemical structures of the analytes measured in this work.

Figure S2 The ultra-violet absorption spectra of the solutions (including the reaction solution (namely 0 times), the MeOH-HAC solutions after elution the materials 1-6 times, and ethanol after elution the materials 3 times (namely 7-9 times)).

The procedure for synthesis of C18/SiO₂ stationary phase.

Firstly, bare silica (particle size, 5 µm; pore size, 30 nm) was activated by 15% (wt.%) dilute nitric acid aqueous solution under quick stirring at room temperature. 1.5 h later, the materials were washed to neutral by deionized water, the materials were collected and dried. Secondly, C18 was modified on the silica: 2 g activated bare silica microbeads, 47 mL anhydrous toluene, 2 mL of octadecyltrichlorosilane were mixed and refluxed under 110°C for 24 h. The resulting materials were eluted with toluene and ethyl alcohol, and dried. Thirdly, end-capping: the material from the second step, 2 mL of trimethyl chlorosilane and 47 mL of anhydrous toluene were mixed and refluxed in oil bath under 110°C for 24 h.

Figure S3 Chromatogram of ginsenosides on the Amino-SiO₂ column. Chromatographic conditions: 30% ACN-70%H₂O (v:v). Flow rate: 0.2 mL/min, detection wavelength: 203 nm, injection volume: 5 μL. Peak: 1. ginsenoside R1, 2. ginsenoside Rg2, 3. ginsenoside Rb1, 4. ginsenoside Rb3, 5. ginsenoside Rd.

Figure S4 Chromatogram of ginsenosides on a Diol-SiO₂ column. Chromatographic conditions: 30% ACN-70%H₂O (v:v). Flow rate: 0.2 mL/min, detection wavelength: 203 nm, injection volume: 5 μL. Peak: 1. ginsenoside R1, 2. ginsenoside Rg2, 3. ginsenoside Rb1, 4. ginsenoside Rb3, 5. ginsenoside Rd.

Figure S5 Chromatographic separation of mixture of sulfonamides: 1. SM, 2. SDZ, 3. SMZ, 4. SMO. Column (2.1 mm × 150 mm) packed with the same batch of MIP/SiO₂ SP (A) and three different batches of MIP/SiO₂ SP (B). Chromatographic conditions: 0.5% MeOH-99.5% H₂O (v:v), Flow rate: 0.2 mL/min, detection wavelength: 270 nm, injection volume: 5

μL.

materials	Particles SBET ^a	Pore size ^b	Pore volume ^c	Carbon content
	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$	(wt.%)
bare silica	111.7	31.7	0.7	0.4
double bond-	92.9	27.1	0.7	4.0
modified-silica				
MIP/SiO ₂	97.9	26.2	0.7	3.7
NIP/SiO ₂	94.1	22.8	0.6	5.2

Table S1. Pore structure and carbon content of the materials.

a BET surface area.

b BJH adsorption average pore size.

c BJH adsorption cumulative volume of pores between 8.500 Å and 1,500.000 Å radius.

Table S2 Chromatographic data of sulfonamides on the stationary phases.

A	MIP/SiO ₂ SP	т	D-	NIP/SiO ₂ SP	т	D -	C18/SiO ₂	т	D -
Analytes	N/m	$1_{\rm f}$	KS	N/m	$1_{\rm f}$	KS	SP N/m	$1_{\rm f}$	KS
sulfanilamide	6000	1.66	-	4570	2.08	-	8270	2.00	-
sulfadiazine	8650	1.49	3.96	5660	2.60	3.90	4850	2.04	1.40
sulfamethazine	8840	1.63	1.93	4940	3.14	1.60	10250	1.98	2.43
sulfamethoxazole	13510	1.29	4.34	4930	4.06	4.23	10080	1.30	2.76

	MIP/SiO ₂ SP	т	р
Analytes	N/m	$1_{\rm f}$	KS
ginsenoside R1	2690	2.17	-
ginsenoside Rg2	4650	1.66	4.09
ginsenoside Rb1	10420	1.30	2.84
ginsenoside Rb3	9850	0.97	2.45
ginsenoside Rd	11600	1.04	1.51

Table S3 Chromatographic data of ginsenosides on the stationary phases. Mobile phase: MeOH/H₂O, 4:6 (v/v), 0.2 mL/min.

	MIP/SiO ₂ SP	т	р
Analytes	N/m	$1_{\rm f}$	KS
uridine	5470	2.13	-
2'-deoxyguanosine monohydrate	6950	1.77	1.62
adenosine	8810	1.93	2.29
2'-deoxyadenosine	10510	1.94	1.92
adenine	9620	1.91	1.96

Table S4 Chromatographic data of nucleosides on the stationary phases. Mobile phase: MeOH/H₂O, 1:99 (v/v), 0.2 mL/min.

Analytes	MIP/SiO ₂ SP N/m	$T_{\rm f}$	Rs
imidacloprid	2450	1.10	-
4,6-Dimethyl-N-phenyl-2- pyrimidinamine	3550	0.99	2.19
trlflumuron	4320	0.84	2.07
teflubenzuron	6850	0.95	2.79
pyridaben	7260	1.12	2.12
chlorfluazuron	6070	1.36	4.23

Table S5 Chromatographic data of pesticides on the stationary phases. Mobile phase: MeOH/H₂O, 45:55 (v/v), 0.2 mL/min.