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Experimental Section
All aqueous solutions were prepared in ultra-pure water (18.20 MΩ.cm) from a GenPure water 

purification system (Millipore). 1,2-dichloroethane (DCE) was obtained from Sigma Aldrich (Ward-
Hill, MA). Decamethyl Ferrocene (Cp*)2Fe(II)) was obtained from Aldrich (St. Louis, MO). To prepare 
the aqueous continuous phase, we used 10 mM of sodium perchlorate (Sigma Aldrich) in ultra-pure 
water, and the droplet contained varying concentrations of  (Cp*)2Fe(II) in DCE. All reagents were of 
analytical grade and were used without purification. Glassware was thoroughly cleaned before 
experimentation with mQ water, acetone (99.9%, Sigma-Aldrich, Ward-Hill, MA), and finally with the 
respective solvent of interest for that solution. Gold (12.5 µm diameter) working electrodes were 
obtained from CH Instruments (Austin, TX). The Ag/AgCl, 1 M KCl aqueous reference electrode was 
purchased from CH Instruments (Austin, TX) and was used as the counter/reference electrode. The 
working electrodes were polished before use with 0.3 μm alumina powder suspension (Electron 
Microscopy Sciences, Hatfield, PA) on micro-cloth polishing pads (Buehler, Lake Bluff, IL) in water, 
followed by dipping them in piranha solution (a mixture of concentrated sulfuric acid with hydrogen 
peroxide in a ratio of 3:1). The lab-made electrochemical cell was built out of Teflon and cleaned in 
Piranha solution to remove any trace impurities. The microinjection experiments were performed using 
a micro-injector (FemtoJet 4i Eppendorf) and microinjection capillart tips of an orifice diameter of 10 
um (Eppendorf Femtotips). The position of the microinjector was controlled using an XYZ micro-
positioning system (InjectMan 4) and monitored using an optical microscope (mini-2.5X\ 500 FL- 
Optem Fusion lens system). The optical microscope was equipped with a high-resolution sCMOS 
camera (C15440 Orca Fusion BT, from Hamamatsu, Japan). All electrochemical experiments were 
performed using on a CHI 6284E potentiostat (CH Instruments, Austin, TX). The reference electrode 
was placed in a compartment containing 1 M KCl (Fisher Bioreagents, Fair Lawn, NJ) and connected 
to the cell containing the continuous phase by a salt bridge. The salt bridge was made by filling a glass 
tube with 3% agarose (99.9%, Sigma-Aldrich, Ward-Hill, MA) containing 1 M potassium chloride 
(Fischer Bioreagents, Fair Lawn, NJ). The reference electrode served as both the reference and counter 
electrode.
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Figure S1. Optical micrograph showing the size of the Au disk UME used. The diameter of the exposed disc was found to 
be 12.6 µm which corresponds to a radius of  µm.6.3
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Figure S2. Cyclic voltammetry of 155 M (Cp*)2Fe(II/III) in DCE. The cyclic voltammograms were obtained at 0.05 V/s 𝜇
with a 12.3 m diameter Au disk UME as the working electrode, and Ag/AgCl (1 M KCl) reference served as the reference 𝜇
as well as the counter.  The blue curve shows the experimental data and the red curve shows the simulated voltammogram 
using COMSOL Multiphysics. The simulation incorporated finite redox kinetics ( ), a transfer coefficient of 𝑘0 = 0.01 𝑚/𝑠
0.5, and an electrode radius of 6.35 μm at room temperature (298 K). The diffusion coefficients for oxidized and reduced 
forms were 5.3 x 10-6 m2/s and 8.8 x 10-6 m2/s, respectively.



S5

Figure S3: Cyclic voltammetry of 1 mM (Cp*)2Fe(II/III) in bulk DCE phase with 10 mM tertbutyl ammonium perchlorate. 
The cyclic voltammograms were obtained at 0.2 V/s with a 12.3  diameter Au disk UME as the working electrode, and 𝜇𝑚
a Ag/AgCl (1 M KCl) reference served as the reference as well as the counter. The Ag/AgCl 1 M aqueous reference 
electrode used in the experiments were separated from the cell by a salt bridge. The E1/2 value was found to be -0.1 V vs. 
Ag/AgCl  (1 M KCl) reference. 

 Bond Number Calculation (Bo)
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In fluid mechanics, Bo is a dimensionless number measuring the importance of gravitational 
forces compared to the surface tension:1

𝐵𝑜 =
∆𝜌.𝑔.𝐿2

𝛾
                                                                    [𝑆1]

Where,  is the difference in the density of the two phases (kg/m3),  is the gravitational ∆𝜌 𝑔
acceleration (9.8 m/s2),  is the radius of the curvature of the droplet (m),  is the surface tension 𝐿 𝛾
(N/m).  

For a DCE droplet of , the difference in density (  ( and 𝐿 = 51 𝜇𝑚 ∆𝜌) = 0.33 𝑔/𝑚𝐿 𝜌𝑤 = 1 𝑔/𝑚𝐿 

and the surface tension of DCE|water interface is found to .2  𝜌𝐷𝐶𝐸 = 1.33 𝑔/𝑚𝐿 28.2 𝑚𝑁/𝑚

Using these values and Eq. S1, we obtain,  x 10-4. The value of  which implies 𝐵𝑜 = 2.98 𝐵𝑜 ≪ 1,

the affect to gravitational force is negligible in our system. 
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Figure. S4 Experimental data (red) and noise filtered data (purple) using Savitzky-Golay filter for the purple voltammogram 
shown in Fig. 3 (h). The experiments were conducted without the presence of a Faraday cage, which likely contributed to the 
observed noise in the system.

 Measurement of Contact Angle
An emulsion comprising 1,2 dichloroethane droplets dispersed within a continuous water phase was 
prepared using a horn sonicator and subsequently transferred into a glass cuvette. The emulsion was 
allowed to settle, enabling the oil droplets to descend freely onto the underlying glass substrate. 
Subsequently, side-view optical micrographs at the bottom of the cuvette were captured, as shown in 
Fig. S5. 
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 Geometrical description of a droplet on a substrate.
 A droplet sitting on top of a flat substrate is depicted in Fig. S6. Under our experimental 

conditions gravity is much weaker than surface tension and thus the droplet adopts a spherical curvature. 
In 2-D the surface of the droplet can be described by the equation of a circle (considering y-axis as the 
rotational axis of symmetry), which in reality is a sphere in 3-D. 

Figure S5. (a) Contact angle measurement for 1,2 dichloroethane droplets on a glass substrate surrounded by a bulk water phase. 
The contact angle was measured to be 149 ± 4  (b) Table of measured contact angles for five different droplets, the standard °
deviation was calculated to be 4 .°
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(𝑥 ‒ 𝑥0)2 + (𝑦 ‒ 𝑦0)2 = 𝑅2                                                       [𝑆2]

where, R,  and  are the radius of the sphere and the coordinates of the center of the sphere, 𝑥0 𝑦0

respectively. Since the droplet does not translate along the x axis, a value of  is used at all time. 𝑥0 = 0

The intersection between the sphere and the plane is a disk having a radius . This quantity will be 𝑅𝑤 

referred as the contact radius of the droplet. Therefore, in 3-D the sessile droplet resembles a spherical 
cap.

 The angle  corresponds to the angle between the tangent of the sphere at y = 0 and the substrate. This 𝜃
angle is referred as the contact angle between the droplet and the substrate.  These two quantities can 
be used to derive all the other geometric parameters of this system. We provide below relations between 
these two quantities and other parameters used in the simulation.

Volume of the droplet (V):

𝑉 =
𝜋𝑅3

𝑤

3 (𝑠𝑖𝑛𝜃(2 + 𝑐𝑜𝑠𝜃)

(1 + 𝑐𝑜𝑠𝜃)2 )                                                            [𝑆3]

Height of the droplet (h):

ℎ = 𝑅𝑤(1 ‒ cos 𝜃
𝑠𝑖𝑛𝜃 )                                                                   [𝑆4]

Position of the center of the circle (x0, y0)

𝑥0 = 0                 𝑦0 =
𝑅𝑤

tan 𝜃
                                                         [𝑆5]

Radius of the circle (R):

𝑅 =
𝑅𝑤 

sin 𝜃
                                                                          [𝑆6]

 Rate of dissolution of a sessile droplet under diffusion limited 
condition

Figure S6. Geometry of a droplet on a substrate. The y axis is a rotational axis of symmetry for the droplet. 
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The rate-limiting process varies depending on the specific conditions, encompassing factors such as 
vapor transport, phase transition at the droplet's free surface, heat transfer within the droplet, heat 
conduction through the substrate, or their combination. Among these scenarios, the diffusion-limited 
model is extensively studied for situations where the diffusive transport of vapor from the droplet into 
the atmosphere governs the evaporation process.3 Extensive theoretical, numerical, and experimental 
efforts have been dedicated to exploring this research domain.4–6 Evaporation of a droplet occurs due 
to a negative concentration gradient of its constituents, which diffuses from the droplet interface 
towards the surrounding medium. Initially, Epstein and Plesset described this for free spherical air 
bubble in water.7 This solution was adapted for sessile droplets, considering the modified geometry and 
boundary conditions, particularly the absence of flux through the substrate, giving the solution for 
evaporation of sessile droplets. In 2005, Popov et al. extended this formulation to evaporating sessile 
droplets in air. The rate of volume change for such droplets is given by:8

𝑑𝑉
𝑑𝑡

=‒
𝜋𝑅𝑤𝐷𝑀(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)

𝜌
𝑔(𝜃)

(1 + 𝑐𝑜𝑠𝜃)2
                                               [𝑆7]

 is the diffusion coefficient of the molecules constituting the droplet phase (DCE in our case) in the 𝐷
bulk phase (water in our case). is the density of the dissolving phase (the DCE droplet) defined here 𝜌 
in units of volume per unit of mass. M is the molecular weight of the molecules constituting the droplet 
phase.  is the concentration at the interface between the droplet and the bulk phase. It is taken as the 𝑐𝑠𝑎𝑡

maximum concentration of DCE that can be dissolved in water (i.e., the concentration at saturation). 
 is the concentration far from the interface. Since the cell is opened and DCE in water can evaporate 𝐶∞

this value is kept at zero at all time. Finally, the function  in Eq. 7 is given by𝑔(𝜃)

𝑔(𝜃) = (1 + 𝑐𝑜𝑠𝜃)2{𝑡𝑎𝑛(𝜃
2) + 8

∞

∫
0

𝑐𝑜𝑠ℎ2(𝜃𝜀)
𝑠𝑖𝑛ℎ(𝜃𝜀)

 𝑡𝑎𝑛ℎ(𝜀(𝜋 ‒ 𝜃))𝑑𝜀}                   [𝑆8]

This function accounts for the substrate hindering the diffusion of DCE into water. When a spherical 

droplet is considered (i.e., in absence of a substrate) the term  in Eq. [7] is equal to 1.

𝑔(𝜃)

(1 + 𝑐𝑜𝑠𝜃)2

 Calculating diffusion coefficient of DCE in water for CCA and CCR 
modes
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Part A: CCA Mode of Dissolution 

As discussed previously, the contact angle ( ) remains constant during CCA mode. Differentiating Eq. 𝜃𝑐

S3 with the constraint of a constant , and plugging in the value of , into Eq. S7 yields: 𝜃𝑐

𝑑𝑉
𝑑𝑡

𝑑𝑅
𝑑𝑡

=‒ {𝐷(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀

𝜌
.

1

sin3 𝜃(2 + cos 𝜃)
.𝑔(𝜃)}.

1
𝑅

                                   [𝑆9]

Therefore, a plot of vs.  has a constant slope:
𝑑𝑅
𝑑𝑡

 
1
𝑅

𝑚𝐶𝐶𝐴 =  ‒ {(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀

𝜌
.

1

sin3 𝜃(2 + cos 𝜃)
.𝑔(𝜃)}𝐷                                       [𝑆10]

Using the value of  from the fit, the value of  for DCE in water can be calculated. From the fit shown 𝑚 𝐷

in Fig. 3 (e) in the main text, the value of was found to be -2.4 cm2/s, which gives a value of  for 𝑚𝐶𝐶𝐴 𝐷
DCE in water as 4.5 x 10-6 cm2/s. 

Part A: CCR Mode of Dissolution 

For the CCR mode of dissolution,  remains constant and  decreases. Similar to the last case, 𝑅𝑤 𝜃𝑐

differentiating Eq. S3 with the constraint of a constant , and plugging in the value of , into Eq. S7 𝑅𝑤

𝑑𝑉
𝑑𝑡

yields:

𝑑𝜃
𝑑𝑡

=‒ {𝐷(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀

𝜌.𝑅2
𝑤

}.𝑔(𝜃).(1 + 𝑐𝑜𝑠𝜃)2                                   [𝑆11]

We define  as  to obtain the more compact formula:𝑔(𝜃).(1 + 𝑐𝑜𝑠𝜃)2 𝑄(𝜃)

𝑑𝜃
𝑑𝑡

=‒ {𝐷(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀

𝜌.𝑅2
𝑤

}.𝐾(𝜃)                                                  [𝑆12]

A plot of vs.  is has a constant slope:
𝑑𝜃
𝑑𝑡

 
𝑄(𝜃)

𝑚𝐶𝐶𝑅 =‒ {(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀

𝜌𝑅2
𝑤

}𝐷                                                       [𝑆13]

Using the value of  from the fit, the value of  for DCE in water can be calculated. From the fit 𝑚𝐶𝐶𝑅 𝐷

shown below, Fig. S7, the value of was found to be -3.8 cm2/s, which gives a value of  for DCE 𝑚𝐶𝐶𝑅 𝐷
in water as 3 x 10-6 cm2/s. 
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Figure S7. Rate of contact angle decrease vs. K ( ) (red points). The solid navy curve is a linear fit on the data, slope = -𝜃
3.8 ± 0.2 cm2 /s, R2 = 0.986. 
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 Derivation of the Mesh Velocity
Part A: CCR Mode of Dissolution 

The circle defining the boundary between the droplet and the bulk phase can be expressed as a function 
of the contact angle and the contact radius by combining Eqs. S4 and S5 to obtain:

𝑥2 + (𝑦 +
𝑅𝑤

𝑡𝑎𝑛𝜃)2 = ( 𝑅𝑤

𝑠𝑖𝑛𝜃)2                                                      [𝑆14]

The derivative of the Eq. S11 with respect to time is 

2𝑥(𝑑𝑥
𝑑𝑡) +  2(𝑦 +

𝑅𝑤

𝑡𝑎𝑛𝜃)(𝑑𝑦
𝑑𝑡

‒
𝑅𝑤

𝑠𝑖𝑛2𝜃
.
𝑑𝜃
𝑑𝑡) =‒

2𝑅2
𝑤

𝑡𝑎𝑛𝜃.𝑠𝑖𝑛2𝜃(𝑑𝜃
𝑑𝑡)                  [𝑆15]

Note that there are no time derivatives for  as it is a constant during CCR mode of dissolution. For 𝑅𝑤

the point , Eq. S12 can be written as:(0,𝑦 = ℎ)

2(ℎ +
𝑅𝑤

𝑡𝑎𝑛𝜃)(𝑑𝑦
𝑑𝑡

‒
𝑅𝑤

𝑡𝑎𝑛𝜃) =  ‒
2𝑅2

𝑤

𝑡𝑎𝑛𝜃.𝑠𝑖𝑛2𝜃(𝑑𝜃
𝑑𝑡) 

�𝑑𝑦
𝑑𝑡|𝑥 = 0 =

ℎ
sin 𝜃(𝑑𝜃

𝑑𝑡)                                                       [𝑆16]

The problem of deriving the rest of points is the parameterizations of the circumference of the circle.9 
We can define a scaling variable  such that it goes from 0 to 1 and is independent of The expression 𝑦̆, 𝜃. 
for is given as:𝑦̆ 

 𝑦 =  𝑦̆ .𝑦(𝑥 = 0) =  𝑦̆ .ℎ                                                          [𝑆17]

Using Eq. S13 and S14, we can write an expression for  for all other points on the circumference (𝑑𝑦/𝑑𝑡)
of the circle. Differentiating Eq. S13 and substituting in Eq. S14 we get:

(𝑑𝑦
𝑑𝑡) =

𝑦
𝑠𝑖𝑛𝜃

 (𝑑𝜃
𝑑𝑡)                                                                   [𝑆18]

Now that we have the expression for all the velocity along the y axis, we can substitute Eq. [15] back 
into Eq. S12 to calculate the velocity along the x axis, which yields the following:

(𝑑𝑥
𝑑𝑡) = (ℎ ‒ 𝑦

𝑥 )(𝑑𝑦
𝑑𝑥) +

𝑦
𝑠𝑖𝑛𝜃(𝑑𝜃

𝑑𝑡)                                                       [𝑆19]

Eq. S15 and S16 describe the x and y components of velocity of the droplet boundary during the CCR 
mode of dissolution of the droplet. 

Part B: CCA Mode of Dissolution 

To derive equation for the velocity of the droplet boundary along the x and y axis, a similar approach 
as part A can be taken. Eq. S11 can be written in terms of the radius of the circle .(𝑅)

𝑥2 + (𝑦 + 𝑅cos 𝜃)2 = 𝑅2                                                              [𝑆20]

This equation of circle described above can be differentiated w.r.t time to give the following expression:

2𝑥(𝑑𝑥
𝑑𝑡) +  2(𝑦 + 𝑅𝑐𝑜𝑠𝜃)(𝑑𝑦

𝑑𝑡
+ 𝑐𝑜𝑠𝜃

𝑑𝑅
𝑑𝑡 ) = 2𝑅(𝑑𝑅

𝑑𝑡 )                                [𝑆21]

Note that  is a constant during CCR mode of dissolution. For the point , Eq. S18 can be 𝜃 (0,𝑦 = ℎ)
written as:
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2(ℎ + 𝑅𝑐𝑜𝑠𝜃)( �𝑑𝑦
𝑑𝑡|𝑥 = 0 + 𝑐𝑜𝑠𝜃

𝑑𝑅
𝑑𝑡 ) =  2𝑅

𝑑𝑅
𝑑𝑡

                                          [𝑆22]

�𝑑𝑦
𝑑𝑡|𝑥 = 0 = (1 ‒ 𝑐𝑜𝑠𝜃)

𝑑𝑅
𝑑𝑡

                                                             [𝑆23]

Defining a scaling variable like the previous case, we can represent the velocity of all of the points 𝑦̆ 
along the y axis as the following:

 𝑦 =  𝑦̆ .𝑦(𝑥 = 0) =  𝑦̆ .ℎ                                                     [𝑆24]

Using Eq. S20 and S21, we can write an expression for  for all other on the circumference of (𝑑𝑦/𝑑𝑡)
the circle. Differentiating Eq. S21 and substituting Eq. S20 we obtain:
𝑑𝑦
𝑑𝑡

=
𝑦
𝑅

 
𝑑𝑅
𝑑𝑡

                                                                   [𝑆25]

Now that we have the expression for all the velocity along the y axis (Eq. S22), we can substitute Eq. 
S22 into Eq. S18 to calculate the velocity along the x axis, which yields the following: 

𝑑𝑥
𝑑𝑡

=
[𝑅2 ‒ (𝑦 + 𝑅𝑐𝑜𝑠𝜃)2]

𝑅𝑥
𝑑𝑅
𝑑𝑡

                                                       [𝑆26]

To further simplify Eq. S23, we can substitute results from Eq. S17 to derive the following expression:
𝑑𝑥
𝑑𝑡

=
𝑥
𝑅

 
𝑑𝑅
𝑑𝑡

                                                                          [𝑆27]

Eq. S21 and S24, can accurately describe the velocity of the droplet boundary during the CCA mode 
of dissolution of the droplet. 
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 Calculation of Junction Potential ( w/o)∆𝜙

Junction potential at the oil|water interface occurs as a result of the difference of solubility of the ion 
between the two immiscible liquids. The electrical potential difference across the interface, w/o, is ∆𝜙
calculated using:10

∆𝜙𝑤/𝑜 =
∆𝐺𝑜,  𝑤→𝑜

𝐶𝑙𝑂4

𝐹
+

𝑅𝑇
𝐹

ln ( 𝑎𝐷𝐶𝐸
𝐶𝑙𝑂4

𝑎𝑤𝑎𝑡𝑒𝑟
𝐶𝑙𝑂4

)                                                [𝑆28] 

The first term on the right side is the standard potential difference of ion transfer for ClO4
- from water 

to DCE. The second term on the right depends on the ratio of ClO4
- in both phases. This equation 

assumes that only ClO4
- will partition between DCE and water (i.e. Na+ partitioning is neglected). This 

is a good approximation considering that  < .11,12 Maintaining |∆𝐺𝑜,  𝑤→𝑜
𝐶𝑙𝑂4 | ( ‒ 170 𝑚𝑉) |∆𝐺𝑜,  𝑤→𝑜

𝑁𝑎 | (591 𝑚𝑉)

electro-neutrality inside the DCE droplet imposes that . Since we assumed that [𝑎𝑛𝑖𝑜𝑛]𝐷𝐶𝐸 = [𝑐𝑎𝑡𝑖𝑜𝑛 ]𝐷𝐶𝐸

ClO4
- is the only anion that can be present in DCE then, for each  being oxidized to (𝐶𝑝 ∗ )2𝐹𝑒(𝐼𝐼)

there has to be one ClO4
- entering the droplet and(𝐶𝑝 ∗ )2𝐹𝑒(𝐼𝐼𝐼) 

 [𝐶𝑙𝑂 ‒
4 ]𝐷𝐶𝐸 = [(𝐶𝑝 ∗ )2𝐹𝑒(𝐼𝐼𝐼) ]𝐷𝐶𝐸                                              [𝑆29]

This process is depicted in Fig. S8. 

The total potential loss between the working electrode and the reference electrode is the summation of 
all the potential loss along the electrical path. In addition to the potential loss at the DCE|water interface 
we should consider potential loss at the salt bridge and the frit of the reference, for example. These last 
two sources of potential loss are assumed to be constant as the composition of the solution at each of 
these interfaces is not changing. Hence, the total potential loss becomes:

∆𝜙 =
∆𝐺𝑜,  𝑤→𝑜

𝐶𝑙𝑂4

𝐹
+ (𝑅𝑇

𝐹 )ln ( [𝐶𝑙𝑂 ‒
4 ]𝐷𝐶𝐸

[𝐶𝑙𝑂 ‒
4 ]𝑤𝑎𝑡𝑒𝑟) + 𝑐𝑠𝑡𝑒                                        [𝑆30] 

Figure S8. Partitioning of perchlorate ions across the oil-water interface during the oxidation and the reduction of (Cp*)2Fe(II) 
and (Cp*)2Fe(III), respectively. For the sake of clarity (Cp*)2Fe(III) is denoted as Cp*+ and (Cp*)2Fe(II) is denoted as Cp*. 
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where cste corresponds to constant sources of potential loss (salt bridge and frite of the reference 
electrode). The value of [ClO4

-]water is 10 mM and constant with time as the aqueous phase acts as an 
infinite reservoir of perchlorate ions. [ClO4

-]DCE is assumed to be equal to [(Cp*)2Fe(III)]. The w/o vs. ∆𝜙
time curve in the main file was adjusted for a potential of 19 mV, which is attributed to the junction 
potential loss at the salt bridge-water interface.

 Numerical Simulation

This section describes the overarching design of the simulation and provides explanation about 
the choice of the boundaries, important parameters to consider and how was tested the simulation. A 
full COMSOL report is provided in a separate file in SI. 

Simulations were performed using a Finite Element Method with a commercial software, COMSOL 
Multiphysics 6.0. A 2D axial symmetry was used with a time-dependent solver. Simulations were run 
on a PC equipped with an intel Xeon processor, 64-bit operating system, x64-based processor and 32 
GBs of RAM. A typical simulation takes about 45 min which lead to approximately 11 seconds of 
simulation per second of experiment. A sequence of 44 voltammograms represents 242 s under our 
experimental conditions. 

The goal of the simulations is to predict the electrochemical response of the (Cp*)2Fe(III), 
/(Cp*)2Fe(II), contained in a droplet during the dissolution of this latter. More precisely, the simulation 
solves for the diffusion of the redox molecules within the droplet in presence of a UME biased with a 
ramp of potential. The dissolution of the droplet is accounted in the simulation by deforming the mesh 
with an Arbitrary Lagrangian-Eulerian (ALE) method. The rate of deformation of the mesh is an 
adjustable parameter of the simulation. To ease the adjustment of the simulation on the experiment, the 
simulation was cut into 5 separate time segments (called “Study” in COMSOL) with the “n+1” study 
starting from the final solution of the “n” study. 

Geometry & Mesh Deformation

The meshed geometry used for the simulation is shown in Fig. S9. Only the volume inside the 
droplet is simulated. The electrode sits at the bottom of the droplet. A small volume surrounding the 
electrode is finely mesh to capture precisely the gradients of concentration. Meshing is critical to avoid 
significantly distorted elements. The initial mesh is designed to follow the deformation, like a conformal 
mapping. An automatic remeshing node was used in the solver to prevent very large distortions. The 
initial mesh was optimized by manually increasing the number of elements in the mesh. A number of 
3,500 elements was chosen. 
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Figure S9. Meshed geometry for the simulation. The scale bar is 20 m. 𝜇

           Since gravitational forces are weak in comparison to surface tension the droplet is assumed to 
adopt a spherical curvature at all time. The simulation reflects this shape by using the equation of circle 
to draw the initial droplet and subsequently using specific rates equations for the mesh deformation that 
ensure the conservation of the curvature. Two cases were considered, constant contact angle (CCA) and 
constant contact radius (CCR). The equations for both cases are given in Table S1. A node “Prescribed 
Mesh Velocity” in the ALE module was used to apply a deformation on the mesh. The derivation of 
the rate equations is given on Pg. no S13-14. 

Table S1. Rate equations for the « r » and « z » velocity components of the mesh at the water|DCE 
interface.

The dissolution of the droplet can alternate between these two modes in the so-called “stick & slip” 
mode. The transition between CCA and CCR mode is determined in the simulation by adding a 
conditional statement in the mesh velocity node. If the contact radius is larger than 1.25 times the radius 
of the electrode (i.e., 8 µm) then, the dissolution follows a CCA mode. Otherwise, mesh displacement 
obeys a CCR mode. This reflects our experimental observations. The contact line between the droplet 
and the glass is pinned when reaching the gold/glass boundary. A value of 1.25 (and not 1) is used to 
avoid the disappearance of a boundary (the glass sheath) during the simulation. 

Physics 

The diffusion of the species (Cp*)2Fe(III) and (Cp*)2Fe(II) inside the droplet during the course of the 
voltammetric experiment is simulated by solving the second Fick’s law:

∂𝐶𝑖

∂𝑡
+ 𝐷𝑖∇𝐶𝑖 = 0

Velocity CCA CCR

Vr Eq. S27 Eq. S19

Vz Eq. S25 Eq. S18
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where Di, and Ci are the diffusion coefficients and concentrations of the species “i”, respectively. 
Briefly, a flux boundary is used at the surface of the electrode to reflect the consumption/production of 
the species upon exchange of an electron. The Butler-Volmer law for current-potential is used to set the 
flux. The flux is controlled by the difference of potential between a reference (taken here as the potential 
of the solution far away from the electrode) and the surface of the electrode. This potential difference 
is expressed as the sum of three terms:

∆𝐸 = 𝐸𝑊𝐸 + 𝑅𝑖 + ∆𝜙

Where, the potential ramp applied at the electrode, , the potential loss in solution, , and the 𝐸𝑊𝐸 𝑅𝑖
junction potential at the oil/water interface. The first term is the applied potential ramp shown in Fig. 3 
(f) in the main text. The potential loss in solution (aka ohmic drop) is defined as the product of the 
current passing through the electrode, i, and the resistance, R, of the solution:

𝑅 = 𝑅𝑂

𝐶𝑜𝑥,  𝑖𝑛𝑖

𝐶𝑂𝑥

Where, R0, Cox,ini and Cox are the initial resistance of the solution, the initial concentration of 
(Cp*)2Fe(III) and the concentration of (Cp*)2Fe(III), respectively. Since water contains 10 mM 
of supporting electrolyte but the DCE droplet does not have any added salt we assume that 
most of the resistance originates from the droplet. The resistance is proportional (in first 
approximation) to the concentration of ions and thus the resistance of the droplet will vary as 
a function of concentration of (Cp*)2Fe(III). The initial resistance was found by adjusting the 
first CVs in Fig. 3 (g). A value of 100 MΩ was determined. The value of  is set as 20% 𝐶𝑜𝑥, 𝑖𝑛𝑖

of the initial concentration of ferrocenyl species.

Validation of the model

Figure S10. (a) Simulated voltammograms for “bulk-like” condition using a droplet of radius and a contact angle of 51 𝜇𝑚 
  (b) Simulated voltammograms for “thin-layer-like” condition using a droplet of radius and a contact angle of 149° 8 𝜇𝑚 

.  60°

First, we simulated cyclic voltammograms in two limiting cases, “bulk-like” condition and “thin layer-
like” condition. These two simulations are given in Fig.  S10 (a) and (b), respectively. For both, Fig.  
S9 (a) and (b), a scan rate of a formal potential of -  was used. In Fig. S9 (a), the current 20 𝑚𝑉/𝑠 40 𝑚𝑉
on the y axis was normalized with respect to the steady state current given by the following equation:10

𝑖𝑠𝑠 = 4𝑛𝐹𝐶𝐷𝑟                                                                        [𝑆31]
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In Fig. S9 (b), the current on the y axis was normalized with respect to the value of the peak current 
 for thin-layer voltammetry given by the following equation:10(𝑖𝑝)

𝑖𝑝 =
𝑛2𝐹2𝑣𝐶𝑉

4𝑅𝑇
                                                                       [𝑆32]

In Eqs. S31 and S32, denoted the no of electrons, is the Faraday’s constant, C is the concentration of 
the redox species (155 uM Cred), is the scan rate,  is the diffusion coefficient,  is the universal gas 𝑣 𝐷 𝑅
constant,  is the radius of the electrode (6.3 um),  is the temperature (298 K) and is the volume of 𝑟 𝑇 𝑉 

the solution.  For, Fig. S10 (b), the droplet volume was calculated using Eq. S3 with and 𝜃𝑐 = 60° 

droplet radius of . The product of in Eq. 32 was found to be  x  moles. The FWHM 8 𝜇𝑚 𝐶𝑉 5.19 10 ‒ 17

is indicated with the dotted line and corresponds to value of which is typical of voltammetry in 90 𝑚𝑉, 
thin-layer electrochemistry. A good agreement is observed. It was observed that in the absence of any 
ion-transfer across the oil-water interface, the simulation struggled to conserve the mass of ferrocenyl 
molecules. We attribute this to systematic errors made by the simulation during the droplet dissolution 
process. To address this, a compensation for mass loss function was introduced in the form of an 
interpolation function, with values manually determined to ensure the conservation of overall mass 
within the droplet. This was implemented before introducing any partitioning kinetics across the oil-
water interface. Further details on the mass loss function can be found in the COMSOL report. Then, 
we ensured that mass is being conserved (in absence of our first order kinetic of ion transfer). Fig. S11 
shows the number of moles of species (normalized with respect to the initial amount) during the entire 
simulation. In order to enforce mass conservation, we used a manually parametrized function that 
accounts for systematic errors made while adjusting the movement of the water|DCE boundary and the 
flux of species at that same boundary. These errors are kept below  at all times. A Lagrange ± 2 %
multiplier approach was also tested to maintain mass conservation. However, due to the prohibitive 
increase of simulation time (about 10X) we favored manual parametrization that would take about one 
day to perform and then could be used for all the simulations.

Figure S11. Total number of moles of (Cp*)2Fe(II) and (Cp*)2Fe(III) normalized with respect to the initial total amount, ~83 
fmol as a function of time during the entire simulation.
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 Theoretical lifetime of a droplet

The lifetime ( ) of a droplet is defined as the time between the initial volume, , of the droplet (defined 𝜏 𝑉0

as the volume at t = 0 s) and the final volume (Vf) = 0. Depending on the mode of dissolution (CCR or 
CCA) different sets of equation are used to determine . Under our experimental conditions the droplet 𝜏

initially dissolves in a CCA mode starting with an initial contact radius  until reaching at a 𝑅𝑤(𝑡 = 0)

certain time a radius . Then, the droplet follows CCR mode of dissolution. The total lifetime of 𝑡𝑐 𝑅𝑤(𝑡𝑐)
the droplet ( ) is the sum of the times in CCA ( ) and CCR  modes: . The 𝜏 𝜏𝐶𝐶𝐴 𝜏𝐶𝐶𝑅 𝜏 = 𝜏𝐶𝐶𝐴 + 𝜏𝐶𝐶𝑅

following section presents the equations of  and .4 𝜏𝐶𝐶𝐴 𝜏𝐶𝐶𝑅

Part A:  CCA Mode of Dissolution 𝜏𝐶𝐶𝐴

𝜏𝐶𝐶𝐴 =
𝜌

𝐷(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀
.

1
𝑔(𝜃)

.(𝑠𝑖𝑛𝜃(2 + 𝑐𝑜𝑠𝜃)).[𝑅𝑤(𝑡 = 0)2 ‒ 𝑅𝑤(𝑡𝑐)2]                 [𝑆33]

Part B:  CCR Mode of Dissolution 𝜏𝐶𝐶𝐴

𝜏𝐶𝐶𝑅 =
𝜌

𝐷(𝑐𝑠𝑎𝑡 ‒ 𝑐∞)𝑀
.(3𝑉0

2𝜋 )
2
3

 ( 2(1 + 𝑐𝑜𝑠𝜃𝑜)2

𝑠𝑖𝑛𝜃0(2 + 𝑐𝑜𝑠𝜃𝑜))2
3

𝜃0

∫
0

2
𝑔(𝜃)

𝑑𝜃                     [𝑆34]

where  is the initial contact angle ( ),  is the initial droplet volume that can be calculated using 𝜃0 149° 𝑉0

Eq. S3. The lifetime calculation was done using numerical integration on MATLAB. The code is 
provided below. 

close all;
clear;
clc;

%%%%% DEFINE ALL THE TRIGO FUNCTIONS   %%%%%%%%%%%%%%%%%%%%

f = @(x, tetha) ( tanh( x*(pi-tetha) ).* (cosh(tetha*x).^2) ./ sinh(2*pi*x));

%%%% Parameterization of the model %%%%%

R0 = 51E-4;                 % apparent radius of droplet at t = 0 s measured by ImageJ
tetha0= 149*pi/180;         % initial contact angle in "degree", converted in radians 
R0_CR = 8E-4;               % initial contact radius in CR mode in "cm"
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%%%% Physical constants   %%%%%%%%

R0_CA = R0*sin(tetha0);     % initial contact radius in CA mode in "cm"
rho = 1.25;                 % density in g/cm3
M = 98.96;                  % molecular weight in g/mol
D = 9.9E-6;                   % diffusion coefficient of DCE in water in "cm2/s"
Csat = 87.5E-6;               % saturation concentration of DCE in water in "mol/cm3"

%%%%%%%%% CR mode %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cste = (rho*(R0_CR^2))/(M*D*Csat);          % constante in "s"

%%%%  Computes the function "g"

n=100;                                      % define the number of contact angles
tetha_final =0;                             % minimum value of teha for computation
tetha = linspace(tetha_final,tetha0,n);     % creates an array of equaly spaced tetha values by dividing the initial 
tetha value into 100 steps
g=zeros(0,n);                               % preallocates an array with hundred values to store the solution of "g"
p=zeros(0,n);

for m=1:n
p(m) = integral( @(x) f(x,tetha(m)),0,12);     % the convergence of this integral reaches 0.001% at 12
g(m) = ( (1+cos(tetha(m)))^2 ) *(tan( tetha(m)/2 )+ 8*p(m));
end

%%%% Computes the lifetime in CA mode for a 100 different initial contact angles

I = zeros(size(g));
t_CR = zeros(size(g));
%Q = zeros(size(g));   %another way to perform the integration with trapezoidal method

for m=1:n
    dx = (tetha0-tetha_final)/n;
    I(m) = (1./g(m))*dx;
    t_CR(m) = cste*sum(I);            % integration with the rectangle method
    %Q(m)= cste*trapz(1./g(1:m))*dx;  %another way to perform the integration with trapezoidal method
    
end

%%%%%%%%%%%%%%%   CA mode   %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Internal constants for the model %%%%%

p1 = integral( @(x) f(x,tetha0),0,12);     % the convergence of this integral reaches 0.001% at 12
g1 = ( (1+cos(tetha0))^2 ) *(tan( tetha0/2 )+ 8*p1);
cste1 = sin(tetha0)*(2+cos(tetha0))/(g1);
r = (R0_CR:0.1E-4:R0_CA);                   % array of radii from the initial contact radius to the final before 
switching to CR mode
t_CA = ((rho)/(2*M*D*Csat))*cste1*r.^2;     % array of lifetime to go from initial R0 to values of R in the array 
"r"
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%V = -1E4*(1./(r))*(D*Csat*M/rho)*g1/(sin(tetha0)*(2+cos(tetha0))); %normal velocity of the DCE/water 
interface in CA mode from the %analytical expression
V2 = -1./( diff(t_CA)/0.1 );                % normal velocity of DCE/water interface in CA mode computed from the 
t_CA computed previously

%%%%% Plotting results   %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

subplot(2,2,1);                             % CR mode lifetime as a function of tetha
plot(180*tetha/pi,t_CR);
xlim([min(180*tetha/pi) max(180*tetha/pi)]);
title('Constant Radius Mode');
xlabel('contact angle (degree)');
ylabel('time (s)');

subplot(2,2,2);
plot(1E4*r,t_CA);                           % CA mode lifetime as a function of contact radius
xlim([min(1E4*r) max(1E4*r)]);
title('Constant Angle Mode');
xlabel('contact radius (µm)');
ylabel('time (s)');

subplot(2,2,4);
t_CAf=flip(t_CA);
t_CAf(end)=[];
plot(t_CAf,V2);                             % normal velocity in CA mode as a function of time
xlim([min(t_CA) max(t_CA)]);
title('Constant Angle Mode');
xlabel('time (s)');
ylabel('normal velocity (µm/s)');

%%%%%% Provides values of lifetime in different modes  %%%%%

T_CA = ((rho)/(2*M*D*Csat))*cste1*R0_CA^2   -  ((rho)/(2*M*D*Csat))*cste1*R0_CR^2
T_CR = max(t_CR) - min(t_CR)
T_tot =T_CR+T_CA

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Figure S12. In-situ observation of droplet size dynamics correlated with cyclic voltammetry measurements over time for 1 
mM of (Cp*)2Fe(II) droplets within a bulk aqueous phase devoid of salts. The cyclic voltammetry measurements were 
continuously performed as the droplets underwent shrinkage. Panel (a) illustrates voltammograms recorded in different colors, 
denoted as 1 to 4, corresponding to distinct droplet sizes. Panel (b) showcases color-coded optical micrographs captured at 
points 1 to 4, corresponding to the voltammograms in panel (a). Panel (c) provides a schematic depiction of the ion partitioning 
mechanism across the oil-water boundary. The voltammograms presented above were processed using an adjacent weighted 
averaging technique, employing a window size of 19 points and applying a periodic boundary condition.
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