1	Supplementary material
2	
3	Rapid analysis of bioactive compounds from citrus samples
4	by direct analysis in real-time mass spectrometry combined
5	with chemometrics
6	
7	Xingyu Wang, Yilin Chen, Yanqiao Xie, Yamin Liu, Linhong Fan, Linnan Li *,
8	Zhengtao Wang, Li Yang *
9	
10	The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key
11	Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai
12	Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica,
13	Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
14	
15	* Corresponding author
16	
17	Prof. Li Yang, E-mail: yl7@shutcm.edu.cn; Tel: +86-021-51322506
18	Prof. Linnan Li, E-mail: linnanli@shutcm.edu.cn; Tel: +86-021-51322506

19	Contents
20	Table S1 Kruskal-Wallis test (p<0.05 is valid)3
21 22 23	Table S2 Information for analyte, regression equation, linear range, limit of detection(LOD), limit of quantification (LOQ), and correlation coefficient (R2) by proposedMS method.
24	Table S3 Method validation of synephrine in QP-3 samples by DART-MS4
25 26	Table S4 Comparison of DART-MS and HPLC-MS methods for the analysis of synephrine inQP, CP, and GCP samples.5
27	Figure S1 The chemical structures and information of stand compounds used in this study6
28	Figure S2 The effect of gas heater temperature on the ionization efficiency of synephrine7
29	Figure S3 The effect of MS capillary temperature on the ionization efficiency of synephrine. 7
30 31	Figure S4 The effect of distance between the ceramic tube of DART and MS inlet on the ionization efficiency of synephrine
32	Figure S5 The effect of MS capillary voltage on the ionization efficiency of synephrine8
33	Figure S6 The effect of MS tube lens voltage on the ionization efficiency of synephrine9
34	Figure S7 Comparison of DART-MS analysis of extracted and unextracted samples9
35 36	Figure S8 PCA score plots (a) and PLS-DA (b) in the pairwise comparison between QP, CP, and GCP samples. Samples are coloured based on their name10
37	Figure S9 Discriminant function score plot10
38 39	Figure S10 OPLS-DA score plots (a) and S-plot (b) in the pairwise comparison between inside and outside parts of CP samples
40 41	Figure S11 OPLS-DA score plots (a) and S-plot (b) in the pairwise comparison between inside and outside parts of QP samples
42	Figure S12 The results of HPLC-MS inside and outside parts of CP samples12
43	Figure S13 The results of HPLC-MS inside and outside parts of QP samples13

46	Table S1	Kruskal-Wallis	test (p<0.05	is valid)

Name	P value
Synephrine	0.001
Caffeicacid	0.004
FerulicAcid	0.026
Tetramethoxyflavone	0.003
Tryptophan	0.268
Adenosine	0.09
Naringin	0.676
Guanosine	0.062
Hesperetin	0.198
nobiletin	0.587
Trimethoxyflavone	0.113
Tetramethoxyflavone	0.038
Dihydroxytrimethoxyflavone	0.368
Monohydroxytetramethoxyflavone	0.444
Heptamethoxyflavone	0.003
Dihydroxyhexamethoxyflavone	0.004
Orientin	0.236
Tricin	0.296
Xanthohumol	0.271
Curcumin	0.796

57 Table S2 Information for analyte, regression equation, linear range, limit of detection

(LOD), limit of quantification (LOQ), and correlation coefficient (R2) by proposedDART-MS method.

Analyte	Regression	Linear	LOD	LOQ	Correlation
	equation	range	(ng·mL ⁻¹)	(ng·mL ⁻¹)	coefficient
		(µg·mL ⁻¹)			(R ²)
synephrine	Y=0.36x+0.1901	1.5625-25	39	156	0.9972

60

61 Table S3 Method validation of synephrine in QP-3 samples by DART-MS.

R	Real samples	Add (µg∙mL ⁻ ¹)	Recovery (%)	Intra-day precision (RSD, %, n=6)	Inter-day precision (RSD, %, n=9)	Repeatability (RSD,%)	Stability (R SD,%)
		7	100.71	6.08	6.1		
	QP	17.5	98.10	5.27	5.3	1.58	5.83
		21.8	98.48	5.03	5.0		
62							
63							
64							
65							
66							

Name (mg g-1)	Citri Pericarpium	Reticulatae	Citri Reticulatae Viride	Pericarpium	Citri "Chachi"	reticulatae
	DART-MS	HPLC- MS	DART-MS	HPLC- MS	DART-MS	HPLC- MS
synephrine	1.42	1.48	1.57	1.61	1.13	1.15

67 Table S4 Comparison of DART-MS and HPLC-MS methods for the analysis of68 synephrine in QP, CP, and GCP samples.

Figure S1 The chemical structures and information of stand compounds used in thisstudy.

76 Figure S2 The effect of gas heater temperature on the ionization efficiency of77 synephrine.

79 Figure S3 The effect of MS capillary temperature on the ionization efficiency of80 synephrine.

83 Figure S4 The effect of distance between the ceramic tube of DART and MS inlet on

84 the ionization efficiency of synephrine.

86 Figure S5 The effect of MS capillary voltage on the ionization efficiency of synephrine.

90 Figure S6 The effect of MS tube lens voltage on the ionization efficiency of synephrine.

93 Figure S7 Comparison of DART-MS analysis of extracted and unextracted samples.

- 96 Figure S8 PCA score plots (a) and PLS-DA (b) in the pairwise comparison
- 97 between QP, CP, and GCP samples. Samples are coloured based on their name.

99 Figure S9 Discriminant function score plot.

Figure S10 OPLS-DA score plots (a) and S-plot (b) in the pairwise comparison

103 between inside and outside parts of CP samples.

107 Figure S11 OPLS-DA score plots (a) and S-plot (b) in the pairwise comparison

108 between inside and outside parts of QP samples.

115 Figure S12 The results of HPLC-MS inside and outside parts of CP samples.

119 Figure S13 The results of HPLC-MS inside and outside parts of QP samples.