Supporting information

Effects of anions on the electrospray ionization of proteins in strong acids

Zhongbao Han¹, Huizi Zheng¹, Shuyao Wu², Liyan Liu¹*, Lee Chuin Chen³*

¹College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China

²College of Chemistry, Liaoning University, Shenyang, 110036, China

³Faculty of Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511 Japan

*To whom correspondence should be addressed:

L. C. Chen, Email: leechuin@yamanashi.ac.jp, Phone: +81-55-220-8072

L. Liu, Email: liyanliu@synu.edu.cn, Phone: +86-138-8928-2570

Keywords: Protein, acid-induced protein compaction, molten globule state, high-pressure electrospray

Table of Contents

Figure	Description	Page
Figure S1	High-pressure ESI source	S-3
Figure S2	Electrical conductivities	S-4
Figure S3	Solution flow rates	S-5
Figure S4	MS of cytochrome <i>c</i> in HCl with incremental pH (pH 1-3)	S-6
Figure S5	MS of cytochrome <i>c</i> in TFA with incremental pH (pH 1-3)	S-7
Figure S6	MS of cytochrome <i>c</i> in HNO ₃ with incremental pH (pH 1-3)	S-8
Figure S7	MS of cytochrome <i>c</i> in TCA with incremental pH (pH 1-3)	S-9
Figure S8	MS of cytochrome c in HClO ₄ with incremental pH (pH 1-3)	S-10
Figure S9	Magnified MS for cytochrome c in HClO ₄	S-11
Figure S10	MS of lysozyme in HCl with incremental pH (pH 1-3)	S-12
Figure S11	MS of lysozyme in TFA with incremental pH (pH 1-3)	S-13
Figure S12	MS of lysozyme in HNO ₃ with incremental pH (pH 1-3)	S-14
Figure S13	MS of lysozyme in TCA with incremental pH (pH 1-3)	S-15
Figure S14	MS of lysozyme in HClO ₄ with incremental pH (pH 1-3)	S-16
Figure S15	Figure S15: Magnified MS for lysozyme in HClO ₄	S-17
Figure S16	MS of myoglobin in different acids with pH 2	S-18
Figure S17	MS of Ubiquitin in different acids with pH 2	S-19
Figure S18	Magnified MS for equine & bovine cytochrome c, lysozyme,	S-20
	myoglobin, ubiquitin	
Figure S19	CD spectra for cytochrome c & myoglobin	S-21
Figure S20	Average charge states	S-22
Figure S21	Average charge for HCSD & LCSD at different pHs	S-23
Figure S22	Addition of NH_4OH (cytochrome <i>c</i>)	S-24
Figure S23	Addition of NH4OH (myoglobin)	S-25
Figure S24	Addition of NH4OH (ubiquitin)	S-26
Figure S25	Addition of NH4OH (lysozyme)	S-27

Figure S1: High-pressure ESI source

Figure S1. Schematic of the high-pressure nanoESI ion source. A micropipette tip (i.d. ~ 0.4 mm) is used as the emitter. A platinum wire inserted into the micropipette tip is used for liquid charging. The high-pressure ion source is connected directly to the mass spectrometer using an ion transmission tube with an inner diameter of 0.25mm. A stable Taylor cone can be formed for a highly conductive aqueous solution under super-atmospheric pressure (> 0.3 MPa gauge pressure). The schematic (upper figure) is adapted with permission from *Anal. Chem.*, 2023, 95, 14816–14821.

Figure S2: Electrical conductivities

Figure S2. Measurement of electrical conductivities (*K*) of hydrochloric acids (HCl), trifluoroacetic acid (TFA), nitric acid (HNO₃), perchloric acid (HClO₄), and trichloroacetic acid (TCA) with different pHs.

Figure S3: Solution flow rates

Figure S3. Calculated solution flow rate Q (nL/min) for solutions with different conductivity K (S/m) at different operating spray currents (200~500 nA).

Figure S4: MS of cytochrome c in HCl with incremental pH (pH 1-3)

Figure S4. High-pressure ESI mass spectra of 10 μ M equine cytochrome *c* in HCl aqueous solution with different pH values.

Figure S5: MS of cytochrome c in TFA with incremental pH (pH 1-3)

Figure S5. High-pressure ESI mass spectra of 10 μ M equine cytochrome *c* in TFA aqueous solution with different pH values.

Figure S6. High-pressure ESI mass spectra of 10 μ M equine cytochrome *c* in HNO₃ aqueous solution with different pH values.

Figure S7: MS of cytochrome c in TCA with incremental pH (pH 1-3)

Figure S7. High-pressure ESI mass spectra of 10 μ M equine cytochrome *c* in TCA aqueous solution with different pH values.

Figure S8: MS of cytochrome c in HClO₄ with incremental pH (pH 1-3)

Figure S8. High-pressure ESI mass spectra of 10 μ M equine cytochrome *c* in HClO₄ aqueous solution with different pH values. The green \bullet denotes protonated peaks with acid adducts, and the blue \checkmark denotes peaks with adducts from acid, sodium, and sodium salt.

Figure S9: Magnified MS for cytochrome c in HClO₄

Figure S9. Magnified mass spectra for cytochrome *c* in perchloric acid (HClO4) with a) pH 3, b) pH 2, and c) pH 1.

Figure S10: MS of lysozyme in HCl with incremental pH (pH 1-3)

Figure S10. High-pressure ESI mass spectra of 10 μ M lysozyme in HCl aqueous solution with different pH values.

Figure S11: MS of lysozyme in TFA with incremental pH (pH 1-3)

Figure S11. High-pressure ESI mass spectra of 10 μ M lysozyme in TFA aqueous solution with different pH values.

Figure S12: MS of lysozyme in HNO₃ with incremental pH (pH 1-3)

Figure S12. High-pressure ESI mass spectra of 10 μ M lysozyme in HNO₃ aqueous solution with different pH values. The blue $\mathbf{\nabla}$ denotes peaks with adducts from acid, sodium, and sodium salt.

Figure S13: MS of lysozyme in TCA with incremental pH (pH 1-3)

Figure S13. High-pressure ESI mass spectra of 10 μ M lysozyme in TCA aqueous solution with different pH values.

Figure S14: MS of lysozyme in HClO₄ with incremental pH (pH 1-3)

Figure S14. High-pressure ESI mass spectra of 10 μ M lysozyme in HClO₄ aqueous solution with different pH values. The green \bullet denotes protonated peaks with acid adducts, and the blue $\mathbf{\nabla}$ denotes peaks with adducts from acid, sodium, and sodium salt.

Figure S15: Magnified MS for lysozyme in HClO₄

Figure S15. Magnified mass spectra for lysozyme in perchloric acid (HClO4) with a) pH 3, b) pH 2, and c) pH 1.

Figure S16: MS of myoglobin in different acids with pH 2

Figure S16. High-pressure ESI mass spectra of 10 μ M myoglobin in different acidic solutions with pH 2. The green \bullet denotes protonated peaks with acid adducts, and the blue \checkmark denotes peaks with adducts from acid, sodium, and sodium salt.

Figure S17: MS of Ubiquitin in different acids with pH 2

Figure S17. High-pressure ESI mass spectra of 10 μ M ubiquitin in different acidic solutions with pH 2. The green \bullet denotes protonated peaks with acid adducts, and the blue \checkmark denotes peaks with adducts from acid, sodium, and sodium salt.

Figure S18: Magnified MS for equine & bovine cytochrome c, lysozyme, myoglobin, ubiquitin

Figure S18. Magnified mass spectra for a) equine cytochrome *c*, b) bovine cytochrome *c*, c) lysozyme,d) myoglobin, and e) ubiquitin in perchloric acid (HClO₄) with pH 1.

Figure S19. CD spectrum of cytochrome c (a) and myoglobin (b) in trifluoroacetic acid solution with different pHs. The vertical axis is the mean residue ellipticity.

Figure S20: Average charge states

Figure S20. a) Average charge state of cytochrome *c* (i) and lysozyme (ii) versus pH for different acids (HCl: purple \triangle , TFA: gray \diamond , HNO₃: green \bigtriangledown , HClO₄: blue \Box , TCA: red \circ).

Figure S21: Average charge for HCSD & LCSD at different pHs

Figure S21. a) Average charge state for the high-charge-state distribution (HCSD) of equine cytochrome *c* for pH from 1.75 to 2.5. b) Average charge state for the low-charge-state distribution (LCSD) for pH from 1 to 1.75.

Figure S22: Addition of NH₄OH (cytochrome *c*)

Figure S22. Mass spectra of equine cytochrome *c* prepared by titrating the pH 1 acid solutions with NH4OH to pH 2 (left) and pH 1.5 (right).

Figure S23. Mass spectra of myoglobin in HCl, TFA, HNO₃, and TCA with the presence of ammonium salt. pH = 1.5. The solution is prepared by titrating the pH 1 acid solution to 1.5 using NH₄OH. For (a) HCl and (c) HNO₃, the fitting method is used to estimate the average value for high charge and low charge state distribution (insets). Assume Gaussian distribution.

Figure S24: Addition of NH₄OH (ubiquitin)

Figure S24. Mass spectra of ubiquitin in HCl, TFA, HNO₃, and TCA with the presence of ammonium salt. pH = 1.5. The solution is prepared by titrating the pH 1 acid solution to 1.5 using NH₄OH. For (a) HCl and (c) HNO₃, the fitting method is used to estimate the average value for high charge and low charge state distribution (insets). Assume Gaussian distribution.

Figure S25: Addition of NH₄OH (lysozyme)

Figure S25. Mass spectra of lysozyme in HCl, TFA, HNO₃, and TCA with the presence of ammonium salt. pH = 1.5. The solution is prepared by titrating the pH 1 acid solution to 1.5 using NH₄OH.