Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2024

1	
2	
3	
4	
5	
6	
7	Supplementary Material for
8	
9	Optical control of nanobody-mediated protein activity
10	modulation with photocleavable fluorescent protein
11	M. Endo ^a , S. Tomizawa ^a , K. Qiaoyue ^a , T. Ozawa ^{a,1}
12	
13	The file includes:
14	Figure S1. Photocleavage of optoNb60 candidates.
15	Figure S2. Light-dependent interaction between β 2AR and optoNb60.
16	Figure S3. Investigation of inhibitory effect on ligand-induced intracellular cAMP increase by optoNb60.
17	

18

Photocleavage of optoNb60 candidates. (a) Box structures of the candidate molecules. (b)
The photocleavage of the candidate molecules. The membrane was immunoblotted with antiFLAG antibody.

14 Supplementary Figure 2.

Light-dependent interaction between β2AR and optoNb60. Cells expressing both optoNb60
and Halo-β2AR-myc were immunoprecipitated (IP) with anti-myc antibody. The membrane
was immunoblotted (IB) with indicated antibodies.

18

¹⁷ Supplementary Figure 3.

Investigation of inhibitory effect on ligand-induced intracellular cAMP increase by optoNb60. 18 (a) Ligand-induced intracellular cAMP changes. Control: no expression of any nanobodies. 19 Each Glosensor-22F bioluminescence value was normalized to the value obtained in control 20 cells without ligand or light stimulation in each independent experiment (n = 7). The 21 statistical difference was analyzed by paired t-test. N.S., P > 0.05, *P < 0.05. (b) Expression 22 levels of Halo-β2AR and Nanobodies. The membrane was immunoblotted (IB) with indicated 23 antibodies. C-Nb60: The C-terminal part of PhoCl (HYGNRVFTKYPR) was added to the N-24 terminus of optoNb60. 25