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Section 1: Supporting Experimental Section

The denoising algorithm of sane (rank = 10) was used, which is a memory efficient
development of the proposed uncoiled random QR denoising (urQRd) algorithm,’
and is publicly available from SPIKE.?2 To extract the signal from the noise, the
original dataset is truncated by randomly sampling the original matrix, breaking up
any patterns that could contribute to the noise. This truncated dataset is then
subjected to QR decomposition using a specified rank, allowing for the separation of
signal and noise. After QR decomposition is applied, the resulting orthogonal matrix
(Q) is multiplied by the truncated data set to reconstruct the original data with the
noise removed.! Subsequently, QR decomposition is iterated to successive rows (t;
rows or scan lines) until the entire matrix is factorised; this iterative approach allows
for parallel processing of rows. Furthermore, the rank used in QR, which is the
number of linearly independent rows/columns in the matrix used for the
reconstruction of the original dataset, was previously shown to affect the quality of
denoising by Chiron et al., where an optimised signal-to-noise ratio (SNR) gain was
observed by selecting a rank (rank is doubled for urQRd) equivalent to the number
of expected precursor ions observed in the y-axis.! Due to the number of precursor
ions observed in Section 3.5, a logical rank of 10 was used for the denoising of
danvatirsen.
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Section 2: Supporting Figures

Supporting Figure S1 Nomenclature for Oligonucleotide fragmentation
based on Mcluckey cleavages based on Scheme 1, where the locked nucleic
acid forms a bridge between the 2 carbon and 4 carbon.
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Supporting Figure S2 2D Pulse sequence, where the increment delay was
fixed by the number of scans and subsequently averaged after accumulation.
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Supporting Figure S3 MS spectrum of danvatirsen after desalting using
HyperSep™ C18 plates.
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Supporting Figure S4 MS spectrum of MALAT-1 after desalting HyperSep™
C18 plates.
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Supporting Figure S5 MS spectrum of danvatirsen after desalting
HyperSep™ C18 plates highlighting the [M-8H]?- and a phosphate impurity in
the phosphorothioate backbone, with the simulated spectrum (bottom).
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Supporting Figure S6 MS spectrum of MALAT-1 after desalting HyperSep™
C18 plates highlighting the [M-8H]®, a phosphate impurity in the
phosphorothioate backbone, sodium and disodium adducts, with the
simulated spectrum (bottom).
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Supporting Figure S7 MS spectrum of danvatirsen, [M-8H]%, with the
simulated spectrum (red).
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Supporting Figure S8 MS spectrum of MALAT-1, [M-8H]?-, with the simulated
spectrum (red).
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Supporting Figure S9 EDD-MS/MS spectrum of danvatirsen, [M-8H]%-, at 22.8
eV bias for 0.5 s irradiation time, with cleavage diagrams overlayed on top.
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Supporting Figure S10 CID-MS/MS spectrum of danvatirsen, [M-8H]%-, at -9.2
V, with cleavage diagrams overlayed on top.
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Supporting Figure S11 UVPD-MS/MS spectrum of danvatirsen, [M-8H]?-,
using 2 shots of 3.4 mJ laser power, with cleavage diagrams overlayed on
top.
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Supporting Figure S12 IRMPD-MS/MS spectrum of danvatirsen, [M-8H]?-, at
27.5 % laser power for 0.06 s irradiation time, with cleavage diagrams
overlayed on top.
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Supporting Figure S13 Isotope pattern of w,? ion (C43Hs54N16023P4S,) of
MALAT-1, obtained from UVPD-MS/MS (Supporting Table S4), where the
peak areas (%) are overlaid on top. The A+2 peak corresponds to a molecule
with one 34S atom (shaded) and two '3C atoms, and its fine isotopic pattern
allows for the resolution of these isotopes. This observation confirms the

presence of four sulfur atoms, as expected for a phosphorothioate
backbone.
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Supporting Figure S14 Beeswarm plot of the relative intensities for each
McLuckey cleavage and its analogues of MALAT-1 (Navy) and danvatirsen
(Orange) produced by Tandem MS using CID, EDD, IRMPD, and UVPD. Each
point represents a single peak, which is evenly spaced in the x-axis to
prevent overlap, where 20-50% of the peaks are plotted due to the large
number of peaks. Zoom-in on EDD is provided due to low abundance of
peaks. Total number of peaks is overlayed on top, see Table 1.
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Supporting Figure S15 The presence of an additional oxygen in danvatirsen
indicates the occurrence of oxidative degradation. The observed low

intensity suggests that the precursor is inherently unstable and undergoes
degradation upon exposure to oxygen.
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Supporting Figure S16 2D-EDD-MS of danvatirsen performed with 22.8 eV
bias for 0.5 s irradiation time (1M x-axis by 2048 y-axis data points)

Supporting Figure S16A Autocorrelation line (equivalent to 1DMS, mass list
available in Supporting Table S9)
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Supporting Figure S16B 2DEDD-MS Fragment
6H]¢- precursor in Figure 4
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Supporting Figure S16C 2DEDD-MS Fragment line extracted from the [M-

7H]”- precursor in Figure 4
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Supporting Figure S16D Fragments from the [M-8H]®- precursor ion
(Supporting Table S10), with the sequence coverage overlaid on top.
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Supporting Figure S16E 2DEDD-MS vertical line, which corresponds to a Wg?"
fragment from the autocorrelation line at m/z 922.426746, marked by an
asterisk (*).
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Supporting Figure S17 Fragmentation efficiency of [M-8H]?- danvatirsen vs.
amplitude of the initial evolution pulse (Supporting Figure S2) with a 1 ps
pulse length when using A) laser-based dissociation (from IR laser) and B)
electron-based dissociation (from a hallow-cathode lamp operating at 22.8
eV)
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Supporting Figure S18A Extracted 2DUVPD-MS/MS fragments of [M-7H]"
precursor with denoising sane rank 10 of a single scan (top, ~350 peaks) and
8 scan accumulated (bottom, ~520 peaks).

Supporting Figure S18B Cleavage diagram of the 2DUVPD-MS/MS fragments
of [M-7H]’- after a single scan with denoising.
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Supporting Figure S18C Cleavage diagram of the 2DUVPD-MS/MS fragments
of [M-7H]’- after 8 scan accumulated with denoising.
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Supporting Figure S19A Extracted 2DUVPD-MS/MS fragments of [M-7H]’
precursor without denoising of a single scan (top, ~460 peaks) and 8 scan
accumulated (bottom, ~700 peaks).
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Supporting Figure S19C Cleavage diagram of the 2DUVPD-MS/MS fragments
of [M-7H]’- after 8 scan accumulated with denoising.

Section 2: Simulation of 2DMS

Expansion of Section 3.6 in the main text. Figures first show the x- and y- dimension
of a 2DMS plot.
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Supporting Figure S20 An ideal transient would have a steady decay in the
A) x-dimension, typical of a 1DMS. Transient in B) y-dimension would remain
constant assuming the spray is consistent and there is no electrostatic
buildup occurring within the source or ion optics.
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Supporting Figure S21 Transient in A) x-dimension and B) y-dimension with
added noise (~ 20%), ideally there would be little to no noise.
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Supporting Figure S22 Transient in A) x-dimension and B) y-dimension with
8-fold increase in noise compared to Supporting Figure S22, emulating the
spectra of low intensity peaks.
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Supporting Figure S23 A) Sum of transients generated from 2DMS (using
noise threshold defined in Supporting Figure S23) and the B) Contour plot
after 2DFFT, subsequent C) summation of Fourier Transformed spectra with
the respective S/N calculation. Signal was determined by the maximum
signal and noise adjacent to the peak was averaged.
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Supporting Figure S24 Equivalent spectra as S$S24 but with twice the number
of rows (N = 64)
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Supporting Figure S25 Equivalent spectra as S24 but with four times the
number of rows (N = 128)
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Supporting Figure S26 Equivalent spectra as S24 but with eight times the
number of rows (N = 256)

By comparing the signal-to-noise ratio (SNR) between Supporting Figures S24 to
S26, it demonstrates that acquiring more scan limes (t; row) can improve the SNR.
However, beyond a certain threshold, the SNR will reach a plateau where further
increases in the number of scans will only result in the acquisition of more noise,
which is observed in Supporting Figure S26. We therefore propose that taking
multiple scans at the peak of SNR, and taking the average will lead to the greatest
signal enhancement instead of acquiring more scan lines (f; row). Python code for
simulating 2DMS is shown in page S32.
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Supporting Figure S27 Zoom region of 8 scan accumulated 2DMS of
danvatirsen, the presence of two distinct precursors is evident, as indicated
by the presence of two intense contours—one corresponding to the [M-7H]"-
precursor and the other to a PO impurity.
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Python code for simulation:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import sys

lowmass = 147

highmass = 1000

fidres = 8192 # 20=I1m, 22=4m, 23=8m
noise level = 0.2

lowmassy = 300
fidresy = 256

def mz to f(data, num charge = 1):
# data is freq or mass
q = 1.60217662e-19 * num charge
B =12 # 12T magnet
mol = 6.0221409e+23 *1000 #account for kg
mz fs = (g * B * mol) / (2 * np.pi * data)
return mz fs

def calculate frequency domain(nyq, number data points):
#nyq rate freq * data points
gntpoints = np.arange (0, (number data points))
factor distancy = (nyg) / (number data points)
frequency domain = gntpoints * factor distancy
return frequency domain

nyq rate = mz to f(lowmass) # get nyqg rate

samp rate = 2*nyq rate # sampling rate is 2* nyqg rate

transient length =fidres/samp rate #num data points / sampling rate =
transient length

nyq ratey = mz_to f(lowmassy) # get nyqg rate

samp_ratey = 2*nyq ratey # sampling rate is 2* nyq rate

transient lengthy = fidresy/samp ratey

sample freq 622 = mz_to f(622) #select a mass e.g. 622 and convert to
frequency

print (nyq rate: %.2f\nfid len: %.2f\nsample freq: %.2f%(nyq rate,
transient length,sample freqg 622))

tx = np.linspace (0, transient length, fidres) #x dimension

ty = np.linspace (0, transient lengthy, fidresy) #y dimenstion

X,Y = np.meshgrid(tx,ty) #create 2D array of x and y data points

xdim = np.exp(1lj * sample freq 622 * np.pi * X) * np.exp(sample freq 622*-X
* 0.002) # xdim and damping transient

ydim = np.exp(lj * sample freq 622 * np.pi * Y) #ydim with no damping added
f = xdim*ydim

#Add noise in x and y dimension
f noise = £ + (np.random.normal (0,noise level,size=np.shape(f))) #+ (1j *
np.random.normal (0,noise level,size=np.shape (f)))

ft = np.fft.rfft2(£f) # 2d fft take real spectrum
ft np.fft.fftshift (ft) #reorder the fft data set so peaks are centered

fig, axes = plt.subplots (3, figsize=(6,8))
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axes[0] .plot (np.sum(f noise,axis=0),c=k) #Sum all the rows and plot the FID
# Annotate the plot

axes[0].plot ([],[], , 1label=Sum of %s $t_{1}$ rows%fidresy)

axes[0].set title(A, loc=left)

axes[0] .set ylabel (Intensity)

axes[0].legend(frameon=False, loc=best, bbox to anchor=(0.2, 0.5, 0.8, 0.8))

data points x = len(ft[0])
ft = np.sqgrt((np.power (ft.real, 2)) + (np.power (ft.imag, 2)))

#Plot 2D contour plot
axes|[1l].contour (ft, cmap=gray, levels=4)
[1].set yticks (np.arange (0, 10+1, 2))

[1].set _ylim([int (fidresy)/1.8,int (fidresy)/1.5])
axes[l].set x1im([2528,2535]) #select range to see peak
[1].set _title(B, loc=left)
[1].set_ylabel (Index / y)

fﬁd = np.sum(ft[:, :], axis=0) #Sum all FTs
sig = np.max (ffyd) # select the max signal

noise = np.mean (£{3d[2000:2400]1) # mean noise (magnitude mode) of noise
adjacent to signal

SN = sig/noise
print (Sig = %.2f \nNoise = %.2f\nSN=%.2f%(sig,noise,sig/noise))

# Plot the summated FTs
axes[2].plot (£ftd, c=k)
axes[2].plot ([],I[], , label=S/N = %.2£%(SN))

[2] .set x1im([2500,2560]) #adjust range to see peak
axes[2].legend (frameon=False)
axes[2].set title(C, loc=left)
axes[2].set ylabel (Intensity)

plt.show ()
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Section 3: Code for generating oligonucleotide mass list.

Available at https://qgithub.com/MKRahman97/Oligonucleotide mass calculator.

Derivatised Select a Standard
HO custom
/ base
Specify 5'
and 3' end Elemental formula TNA
4 of derivatisation
0 0 “" RNA
| |
O=FI’—SH O=P—SH
O \ Adjust / CI)

6 Phosphate linker 6

AN /

Continues throughout the
remainder of the sequence

Supporting Figure S27 Define the inputs for the oligonucleotide mass
calculator by customising the elemental formula for the coloured regions.
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