Supporting informations

Text S1 Mass spectrometry conditions

Text S2 Sample collection and preparation

Table S1 The CAS and item number of steroid hormone standards

Table S2 The gradient elution procedure for the separation of multiple steroid hormones

Table S3 The MRM parameters of multiple steroid hormones

Table S4 Effect of different extractants on the extraction yield of steroid hormones

Table S5 The specificity of multiple steroid hormones

Table S6 The matrix effect of multiple steroid hormones

Table S7 The linearity, limit of detection and limit of quantification of multiple steroid

 hormones

Table S8 Comparison of parameters of studies related to steroid detection by UPLC

 MS/MS methods

Fig. S1 Effect of different cone voltage on steroid hormone response

Fig. S2 Effect of different desolvation temperatures on steroid hormone response

Fig. S3 The MRM chromatogram of E2 and T with different mobile phases. 0.1 mM

NH₄F + ACN (green peaks); pure water + ACN (red peaks)

Fig.S4 LC-MS chromatograms of the 18 steroids at LLOQ included in the method.

Text S1 Mass spectrometry conditions

A, E₁, 2-MeE₂, E₂, E₁-d₂, and E₁-d₂ were detected in negative ion mode with the following parameters: capillary voltage, -1.5 kV; desolvation gas flow, 800 L/h; cone gas flow, 150 L/h; desolvation temperature, 550 °C. T-2,3,4-¹³C₃, 17 α -OHP-d₈, P₄-2,3,4-¹³C₃, A₂-2,3,4-¹³C₃, E, F, 21-DF, B, 11-DF, 21-OHP, 17 α -OHP, DHT, A₂, T, CH, CH-d₇, 17 α -OHP, P₄, P₅, and DHEA were detected by in positive ion mode with the following parameters: capillary voltage, 1.5 kV; desolvation gas flow, 800 L/h; cone gas flow, 50 L/h; corona needle voltage, 21 µA; source temperature, 150 °C and desolvation temperature, 550 °C. IntelliStart was used for optimization of the cone voltages and collision energies.

Text S2 Sample collection and preparation

Blood samples were obtained from *M. musculus* by puncture of the ophthalmic plexus and from *C. auratus* and *R. nigromaculata* by puncture of the cardiac vein. The blood was centrifuged at 1300 rpm for 15 min to obtain serum. The serum was clarified, freed of hemolysis and lipids, and stored frozen at -80 °C. This work was conducted in compliance with the 'Animal Research: Reporting of In Vivo Experiments' (ARRIVE) guidelines and was approved by the Laboratory Animal Welfare and Ethics Committee of Hangzhou Normal University.

A 100- μ L serum sample was mixed with 5 μ L stable isotope internal standard (IS), transferred to an Eppendorf tube, and fully equilibrated for 10 min. Subsequently, 10 μ L 2% FA aqueous solution was added with the aim of addressing the problem of endogenous steroid hormones such as T and E₂ binding to sex hormone-binding globulins in the organism, resulting in low concentrations for detection. The samples were mixed thoroughly after each addition of reagent. Subsequently, 200 μ L methyl tert-butyl ether was added for extraction, and the sample was vortexed for 5 min and then centrifuged at 5000 rpm for 10 min at room temperature. The above liquid–liquid extraction steps were repeated three times, the organic phases were combined, and the collected liquids were blown dry under nitrogen. Finally, 100 μ L ACN was added for re-dissolution, filtered through polyether sulfone membrane with a 0.22- μ m pore size, and then placed in an autosampler for UPLC–MS/MS analysis.

Steroid hormone standards	CAS	Item number
Cholesterol (CH)	57-88-5	C8667
CH-d ₇	83199-47-7	700041P
Androstenedione (A ₂)	63-05-8	A-075
A ₂ -2,3,4- ¹³ C ₃	327048-86-2	A-084
Estradiol (E_2)	50-28-2	E8875
E_2 - d_2	53866-33-4	E4260
Estrone (E ₁)	53-16-7	E-075
17-α-hydoxy progesterone (17α-OHP)	68-96-2	H-085
Testosterone (T)	58-22-0	T-037
Dehydroepiandrosterone (DHEA)	53-43-0	D-063
Progesterone (P ₄)	57-83-0	P-069
Pregnenolone (P ₅)	145-13-1	P-104
Dihydrotestosterone (DHT)	521-18-6	D-073

Table S1. The CAS and item number of steroid hormone standards

227048 82 0	
32/040-03-9	Т-070
850023-80-2	H-096
327048-87-3	737143
52-39-1	S30644
53-06-5	S47960
152-58-9	B27368
64-85-7	B65163
362-07-2	S46451
362-07-2	641-77-0
56588-58-0	B72569
50-22-6	C104537
50-23-7	H110523
	327048-83-9 850023-80-2 327048-87-3 52-39-1 53-06-5 152-58-9 64-85-7 362-07-2 362-07-2 56588-58-0 50-22-6 50-23-7

Time (min)	Flow rate (mL/min)	A (%)	B (%)	Gradient elution curve
initial	0.2	70	30	6
3.5	0.2	40	60	6
8.0	0.3	10	90	6
8.5	0.3	0	100	6
10.0	0.2	70	30	6

 Table S2
 The gradient elution procedure for the separation of multiple steroid hormones

Steroid hormone	Parent ion (m/z)	Cone voltage (V)	Daughter ion (m/z)	CE (eV)	Daughter ion (m/z)	CE (eV)
Α	359.09	4	189.04*	18	331.13	14
E_2	271.02	18	145.01*	40	183.04	42
E_2 - d_2	293.16	2	147.03	38		
Е	361.15	32	91.53	64	163.02*	22
F	363.14	32	97.17	60	121.23*	24
21-DF	347.17	26	121.32*	28	311.18	16
В	347.17	28	91.43	60	121.36*	26
11-DF	347.17	30	97.35*	24	109.33	30
P_4	315.27	30	42.94	52	109.05*	22
P ₅	299.14	48	81.32*	44	159.10	20
$P_4-^{13}C_3$	318.22	26	99.81	22		
A_2	287.15	38	96.95*	18	108.99	22
$A_2-^{13}C_3$	290.17	32	99.86	20		
E_1	269.15	18	144.94*	40	158.93	32
$2-MeE_2$	301.11	2	219.08	12	286.17*	24

 Table S3 The MRM parameters of multiple steroid hormones

E_1 - d_2	271.16	18	145.01	42		
21-OHP	331.17	32	97.39*	22	109.37	30
17-OHP	331.21	42	96.95*	22	108.98	28
17-OHP-d ₈	339.22	38	99.87	28		
Т	289.20	46	96.94*	18	108.98	20
DHEA	271.20	45	197.20	14	213.2*	12
DHT	291.19	45	159.10	16	255.20*	14
$T^{-13}C_3$	292.18	50	99.83	20		
СН	369.18	26	80.95	44	146.90*	20
CH-d ₇	376.21	20	104.93	50	161.02*	20

C4		Efficiency of extraction	L (%)
Steroid normone	Dichloromethane	Hexane	Methyl tert-Butyl Ether (MTBE)
А	79.7	< 50.0	87.7
Е	77.1	< 50.0	91.2
F	89.3	77.8	96.6
21-DF	83.8	74.8	93.8
В	80.1	75.0	91.5
11-DF	79.8	70.8	87.0
A_2	81.3	< 50.0	85.2
E ₂	68.0	< 50.0	84.2
E1	73.6	66.6	84.8
$2-MeE_1$	87.8	72.1	86.3
21-OHP	82.5	< 50.0	82.9
17-OHP	94.1	80.0	97.0
Т	82.3	72.3	91.8
DHEA	94.4	72.8	112.3

Table S4. Effect of dif	fferent extractants on the e	extraction yield of steroid	d hormones
-------------------------	------------------------------	-----------------------------	------------

_				
_	P ₄	66.7	< 50.0	83.91
	DHT	76.2	51.8	88.19
	P ₅	87.8	< 50.0	85.10
	СН	72.8	< 50.0	89.37

* If one depicts the known concentration of standards in as A, the concentration detected by the UPLC-MS/MS for standards spiked after different pretreatment as B. Efficiency of extraction can be calculated as follows: $B/A \times 100$.

Steroid hormones	61-			I/QC
Steroid normones	Steroid hormones Sample Calibration solution Calibration solution A Quality control samples Serum samples Calibration solution E Quality control samples Serum samples Calibration solution F Quality control samples F Quality control samples Calibration solution Serum samples Calibration solution Calibration solution 21-DF Quality control samples Serum samples Calibration solution Calibration solution Calibration solution	Concentration (ng/mL)	Mean	Median
	Calibration solution	0.05-50.00	1.41	1.38
А	Quality control samples	0.21-46.43	1.40	1.41
	Serum samples	0.29-10.32	1.37	1.36
	Calibration solution	0.05-50.00	1.69	1.65
E	Quality control samples	0.18-40.21	1.67	1.66
	Serum samples	0.21-8.32	1.68	1.64
F	Calibration solution	0.05-50.00	1.98	1.97
	Quality control samples	0.21-42.17	1.99	1.99
	Serum samples	0.34-4.43	2.00	1.99
	Calibration solution	0.05-50.00	1.78	1.77
21-DF	Quality control samples	0.15-39.23	1.79	1.78
	Serum samples	0.20-5.32	1.79	1.78
D	Calibration solution	0.05-50.00	1.65	1.65
D	Quality control samples	0.31-39.79	1.66	1.65

 Table S5. The specificity of multiple steroid hormones

	Serum samples	0.37-3.32	1.66	1.66
	Calibration solution	0.05-50.00	1.34	1.34
11-DF	Quality control samples	0.18-42.32	1.33	1.34
	Serum samples	0.32-3.32	1.34	1.35
	Calibration solution	0.05-50.00	1.42	1.42
A_2	Quality control samples	0.28-47.02	1.42	1.42
	Serum samples	0.29-5.08	1.42	1.41
	Calibration solution	0.05-50.00	1.21	1.20
E_2	Quality control samples	0.14-47.20	1.20	1.21
	Serum samples	0.77-32.32	1.21	1.21
	Calibration solution	0.05-50.00	1.31	1.31
E_1	Quality control samples	0.12-42.48	1.30	1.31
	Serum samples	0.53-18.30	1.31	1.31
	Calibration solution	0.05-50.00	1.22	1.23
$2-MeE_1$	Quality control samples	0.11-48.26	1.21	1.23
	Serum samples	0.52-3.24	1.22	1.23
21-OHP	Calibration solution	0.05-50.00	1.14	1.16

	Quality control samples	0.18-37.43	1.14	1.15
	Serum samples	0.08-18.29	1.14	1.16
	Calibration solution	0.05-50.00	1.33	1.34
17α-OHP	Quality control samples	0.09-39.72	1.33	1.34
	Serum samples	0.99-15.47	1.33	1.35
	Calibration solution	0.05-50.00	1.65	1.66
Т	Quality control samples	0.17-48.28	1.65	1.66
	Serum samples	0.72-20.67	1.64	1.65
	Calibration solution	0.05-50.00	2.51	2.53
DHEA	Quality control samples	0.14-39.05	2.50	2.54
	Serum samples	0.48-20.37	2.51	2.53
	Calibration solution	0.05-50.00	1.22	1.21
P_4	Quality control samples	0.17-37.38	1.23	1.22
	Serum samples	0.95-22.26	1.23	1.22
	Calibration solution	0.05-50.00	2.42	2.41
DHT	Quality control samples	0.11-48.24	2.43	2.41
	Serum samples	0.15-3.57	2.43	2.41

	Calibration solution	0.05-50.00	2.55	2.56
P ₅	Quality control samples	0.13-37.38	2.54	2.56
	Serum samples	0.37-2.37	2.55	2.56
	Calibration solution	50-1000.00	1.29	1.29
СН	Quality control samples	108.28-989.82	1.27	1.28
	Serum samples	382.28-899.27	1.27	1.28

	$\frac{\text{Matrix Effect } (n = 5)}{\text{Mean} \pm \text{SD} (\%)}$				
Steroid hormones					
	LQC	MQC	HQC		
А	97.96 ± 6.66	93.85 ± 13.33	95.71 ± 7.62		
Е	91.78 ± 26.39	98.40 ± 7.99	107.34 ± 9.31		
F	99.80 ± 22.57	105.46 ± 7.78	103.88 ± 2.05		
21-DF	98.28 ± 22.56	98.14 ± 6.57	111.06 ± 11.37		
В	86.47 ± 8.35	90.93 ± 5.98	90.53 ± 3.59		
11-DF	89.29 ± 12.22	111.42 ± 3.66	109.77 ± 12.37		
A_2	79.86 ± 6.69	98.93 ± 2.54	93.99 ± 9.64		
E_2	99.83 ± 8.41	84.32 ± 15.46	80.98 ± 9.18		
E_1	95.91 ± 9.82	104.93 ± 5.58	98.19 ± 28.53		
$2-MeE_2$	90.15 ± 8.48	92.20 ± 8.65	86.74 ± 10.38		
21-OHP	91.26 ± 9.27	93.56 ± 9.40	82.42 ± 8.75		
17-OHP	89.40 ± 4.17	89.68 ± 6.61	90.68 ± 3.20		
Т	79.46 ± 2.69	108.12 ± 3.58	98.95 ± 6.82		

 Table S6. The matrix effect of multiple steroid hormones

DHEA	83.79 ± 11.08	98.61 ± 5.01	89.36 ± 13.64
P ₄	92.25 ± 17.37	108.87 ± 3.82	107.16 ± 8.07
DHT	102.05 ± 28.56	107.60 ± 20.23	100.49 ± 21.06
P ₅	100.84 ± 13.94	93.28 ± 14.37	92.61 ± 15.07
СН	102.78 ± 17.69	98.43 ± 4.79	89.31 ± 6.16

Steroid hormone	The standard curve	r^2	LOD (ng/mL)	LLOQ (ng/mL)
A	y = 1.003 x + 1.834	0.9998	0.015	0.05
Е	y = 1.743 x + 0.773	0.9999	0.15	0.5
F	y = 2.374 x + 1.383	0.9961	0.0001	0.0005
21-DF	y = 3.839 x + 2.001	0.9993	0.005	0.02
В	y = 2.328 x + 0.198	0.9912	0.05	0.2
11-DF	y = 1.023 x + 3.384	0.9994	0.015	0.05
A_2	y = 3.638 x + 2.100	0.9999	0.0005	0.002
E_2	y = 1.005 x + 0.478	0.9999	0.005	0.02
E_1	y = 2.030 x + 0.836	0.9999	0.001	0.003
$2-MeE_1$	y = 2.576 x + 0.004	0.9992	0.005	0.02
21-OHP	y = 3.675 x + 1.464	0.9963	0.001	0.003
17α-OHP	y = 1.007 x + 0.552	0.9996	0.005	0.02
Т	y = 1.211 x + 0.668	0.9991	0.01	0.03
DHEA	y = 3.446 x + 1.374	0.9995	0.015	0.05
P_4	y = 1.098 x + 0.336	0.9999	0.005	0.02

Table S7 The linearity, limit of detection and limit of quantification of multiple steroid hormones

DHT	y = 1.102 x + 8.259	0.9982	0.025	0.08
P ₅	y = 3.40 x + 8.437	0.9929	0.075	0.3
СН	y = 3.373 x + 0.226	0.9927	0.15	0.5

Number of steroids	Serum Sample	LLOQ	Rate of recovery	Detection of CH	References
(Internal standard	Required				
included)					
24	200 μL	0.01-12.5 ng/mL	88.8%-107.1%	no	[1]
13	250 μL	0.05-12.9 ng/mL	90.0%-110.0%	no	[2]
16	150 μL	0.005-0.164 ng/mL	88.7%-116.2%	no	[3]
19	290 μL	0.004-0.75 ng/mL	68.2%-135%	no	[4]
14	150 μL	0.001-0.3 nmol/L	83.0%-115.0%	no	[5]
10	/	0.75-2.1 nmol/L	86.7%-106.7%	no	[6]
8	200 µL	0.015-0.95 ng/mL	106.1%-115.7%	no	[7]
22	150 μL	0.003-0.33 nmol/L	83.0%-137.0%	no	[8]
18	200 µL	0.005-1 ng/mL	85.0%-104.0%	no	[9]
19	500 μL	0.04-1.18 ng/mL	80.0%-120.0%	no	[10]
9	200 µL	0.001-0.1 ng/mL	/	no	[11]
12	100 μL	0.1–500 ng/mL	87.0–101.0%	no	[12]
25	100 µL	0.0005-0.5 ng/mL	76.2%-113.7%	yes	This study

 Table S8 Comparison of parameters of studies related to steroid detection by UPLC-MS/MS methods

 References

- [1] Yu, S. L., Yin, Y. C., Zou, Y. T., et, al. A comprehensive LC-MS/MS method for the simultaneous measurement of 24 adrenal steroids: From research to clinical practice. Journal of Chromatography B 1232 (2024) 123941
- [2] David, R. T., Lea, G., Lewis, C., et, al. A 13-Steroid Serum Panel Based on LC-MS/MS: Use in Detection of Adrenocortical Carcinoma. Clinicial Chemistry 63(12) (2017) 1836-1846.
- [3] Jean, F., Yves, L. B., Jéróme G., et,al. A Liquid Chromatography/Tandem Mass Spectometry Profile of 16 Serum Steroids, Including 21-Deoxycortisol and 21-Deoxycorticosterone, for Management of Congenital Adrenal Hyperplasia. Journal of the Endocrine Society. 1(3) (2017) 186-201
- [4] Wu, J., Li, Z.H., Chen, B.R. Simultaneous measurement of 19 steroid hormones in dried blood spots using ultra-performance liquid chromatography-tandem mass spectrometry. Analytical Methods. 16 (2013)
- [5] Merja, R. H., Taija, H., Niina S., et, al. Analysis by LC–MS/MS of endogenous steroids from human serum, plasma, endometrium and endometriotic tissue. Journal of Pharmaceutical and Biomedical Analysis. 152 (2018) 165-172.

[6] Nils, J., Stefanie, S., Michael, T., et, al. Fast and direct quantification of adrenal steroids by tandem mass spectrometry in serum and dried

blood spots. Journal of Chromatography B 861(2008) 117-122.

- [7] Kyriakopoulou, L., Yazdanpanah, M., Colantonio, D.A. A sensitive and rapid mass spectrometric method for the simultaneous measurement of eight steroid hormones and CALIPER pediatric reference intervals. Clinicial Chemistry 46(7) (2013) 642-651.
- [8] Merja, R.H., Teemu M., Raimo, M., et, al. Simultaneous analysis by LC–MS/MS of 22 ketosteroids with hydroxylamine derivatization and underivatized estradiol from human plasma, serum and prostate tissue. Journal of Pharmaceutical and Biomedical Analysis. 164 (2019) 642-652.
- [9] Desaia, R., Harwoodb, D.T., Handelsmana, D.J. Simultaneous measurement of 18 steroids in human and mouse serum by liquid chromatography-mass spectrometry without derivatization to profile the classical and alternate pathways of androgen synthesis and metabolism. Clinical Mass Spectrometry 11 (2019) 42–5
- [10] Zhong, M.Li., Kurunthachalam K. Determination of 19 steroid hormones in human serum and urine using liquid chromatography-T andem mass spectrometry. Toxics 10 (2022) 687.
- [11] Nguyen, V.K., Nguyen, T.H., Nguyen, T.D.T., et.al. Highly Sensitive simultaneous measurement of steroid hormone in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. VNU Journal of Science: Medical and Pharmaceutical Sciences

38(1) (2022) 54-64.

[12] Lee. K., Ella, S. M. N., Kiran, K.S., Katherine, E.W. Sample Preparation and Liquid Chromatography-Tandem Mass Spectrometry for

Multiple Steroids in Mammalian and Avian Circulation. PLoS ONE 7(2) (2012) e32496.

Fig.S1 Effect of different cone voltage on steroid hormone response

Fig.S2 Effect of different desolvation temperatures on steroid hormone response

Fig. S3 The MRM chromatogram of E_2 and T with different mobile phases. 0.1 mM NH₄F + ACN (green peaks); pure water + ACN (red peaks)

Fig.S4 LC-MS chromatograms of the 18 steroids at LLOQ included in the method.