Supporting Information

SERS detection of thiram by a 3D sea cucumber-like composite flexible porous substrate

Yimeng Shi^{a, b}.Yan Zhu^{b, c}·Jiaojiao Sun^b·Huancai Yin^{a, b*}· Jian Yin^{a, b*}

^a School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of

Science and Technology of China, Suzhou, Jiangsu 215163, PR China

^b CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and

Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China

° Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of

Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China

CORRESPONDING AUTHOR

*E-mail: yinj@sibet.ac.cn (for J. Yin).

*E-mail: <u>yinhc@sibet.ac.cn</u> (for H. Yin).

Table of Content

1. Method 1. Calculation Method for Thiram Recovery Rate.

2. Figure S1. The average Raman spectra of Au/Ag/ZnO/P under the excitation of three wavelengths.

3. Figure S2. Comparison for the enhancement effects of ZnO/P, Au/ZnO/P, and Ag/Au/ZnO/P Substrates.

4. Figure S3. EDS spectrum and elemental mapping of Ag/Au/ZnO/P substrate.

5. Figure S4. XPS survey spectrum of the Ag/Au/ZnO/P substrate and high-resolution XPS spectra of Zn 2p, Au 4f, and Ag 3d.

6. Figure S5.XRD of the Ag/Au/ZnO/P substrate.

7. Figure S6. Comparison of the enhancement effects of Au/Au/ZnO/P and Au/Ag/ZnO/P Substrates.

8. Figure S7. Stability evaluation of the Ag/Au/ZnO/P Substrate.

9. Figure S8. The average Raman spectra of apple peel at two concentrations of 4.8 mg/cm² and 4.8 ng/cm².

10. Figure S9. Electron microscopy images of PVDF membrane and seed layer.

1. Calculation Method for Thiram Recovery Rate

Based on the current results, the recovery efficiency is difficult to calculate as the liquid volume on the substrate/apple peels is difficult to monitor. Therefore, we used a different method to conduct the semi-quantitative analysis. Solutions of thiram at various concentrations were sprayed onto apple peels and allowed to air dry. A 1 cm² section of the treated apple peel was then cut into small pieces, placed into a 2 mL EP tube, and immersed in 1 mL of ethanol to dissolve the thiram. The Ag/Au/ZnO/P substrate was subsequently soaked in the tube for 10 minutes, after which Raman analysis was performed. The mass of the thiram was calculated using calibration curves and 1 mL as the total volume. The recovery rate was determined by the ratio of values obtained with Raman detection and the sprayed doses. As a result, the recovery rate for a concentration of 4.8 mg/cm² was approximately 88%.

2. The average Raman spectra of 4-MBA on Au/Ag/ZnO/P substrate under the excitation of three wavelengths

Figure S1 The average Raman spectra of 4-MBA on the Au/Ag/ZnO/P substrate under the excitation of

three wavelengths.

3. Comparison of the Enhancement Effects of ZnO/P, Au/ZnO/P and Ag/Au/ZnO/P

Substrates

Figure S2 (a) SERS spectra of 4-MBA (10⁻³ M) on ZnO/P, Au/ZnO/P, and Ag/Au/ZnO/P substrates; (b)

Band intensities at 1075 cm^{-1} and 1587 cm^{-1} (laser power: 0.0001%).

4. EDS spectrum and elemental mapping of Ag/Au/ZnO/P substrate

Figure S3 EDS spectrum (a) and elemental mapping (b) of Ag/Au/ZnO/P substrate.

5. XPS survey spectrum of the Ag/Au/ZnO/P substrate and high-resolution XPS spectra of Zn

2p, Au 4f and Ag 3d

Figure S4 XPS survey spectrum of the Ag/Au/ZnO/P substrate (a) and high-resolution XPS spectra of

(b) Zn 2p, (c) Au 4f, and (d) Ag 3d.

6. XRD analysis of the Ag/Au/ZnO/P substrate

Figure S5 XRD analysis of the Ag/Au/ZnO/P substrate.

7. Comparison of the Enhancement Effects of Au/Au/ZnO/P and Au/Ag/ZnO/P Substrates

Figure S6 SEM images of (a) AuNPs adsorbed on Au/ZnO/P substrate; (b) The average Raman spectra of 4-MBA on Au/Au/ZnO/P substrate and Au/Ag/ZnO/P; (c) 1075 cm⁻¹ and (d) 1587 cm⁻¹ peaks of 10⁻³ M 4-MBA on Ag/Au/ZnO/P and Au/Au/ZnO/P.

8. Stability Evaluation of the Ag/Au/ZnO/P Substrate

igure S7 (a) Raman spectra of 1×10^{-6} M 4-MBA using the Ag/Au/ZnO/P substrate stored over different time (laser power: 0.0001%). (b) Intensity variation histogram of 1075 cm⁻¹ and 1587

F

cm⁻¹ peaks.

9. The average Raman spectra of thiram on apple peels

Figure S8 The average Raman spectra of thiram on apple peels. Thiram were sprayed on the peels at 4.8 mg/cm² and 4.8 ng/cm². After that, their residue amounts on the peels were detected as

described in Method 1.

10. Electron microscopy images of PVDF membrane and seed layer

Figure S9 Electron microscopy images of PVDF membrane at magnifications of $1 \times (a)$ and $50 \times$

(b), respectively. (c) Seed layer electron microscope picture of zinc oxide growth, it is not visible

under the electron microscope.