Supplementary Information

Au nanoparticles decorated β -Bi₂O₃ as highlysensitive SERS substrate for detection of methylene blue and methyl orange

Binbin Chen^{a, 1}, Lizhu Fan^{b, 1}, Viktoria Golovanova^c, Chunyu Li^f, Kaiwen Wang^a, Jinshu Wang^e, *Dawei Pang^a*, Zhouhao Zhu^d**, Peijie Ma^a****

^a Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science & Engineering, Beijing University of Technology, Beijing, 100124, China ^b National Key Laboratory of Integrated Circuits and Microsystems, Chongqing, 401332, China ^c South-Ukrainian National University, Staroportofrankovskaya Str. 26, 65008, Odessa, Ukraine

^d College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China

^e School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

f Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany

* Corresponding author.

** Corresponding author.

*** Corresponding author.

E-mail addresses: gavinpang@bjut.edu.cn (D. Pang), zhuzhouhao98@foxmail.com (Z. Zhu), peijiema@bjut.edu.cn (P. Ma).

¹ These authors contributed equally to this work.

Calculation of enhancement factors (EF)

Enhancement Factor (EF), as an important parameter, is evaluated to quantify the enhancement effect of a substrate using the following formula [1]:

$$
EF = \frac{I_S N_{bulk}}{I_R N_{surf.}}
$$
 Eq. (1)

In the equation, I_s and I_R represent the Raman signal intensities of the molecule MB with and without the presence of the SERS-enhancing substrate, respectively. N_{bulk} is the average number of MB molecules detected in the absence of SERS measurements, and N_{surf} is the average number of MB molecules detected in SERS measurements. The calculation method for N_{bulk} is as follows:

$$
N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A
$$
 Eq. (2)

In the equation, A_{laser} , h, ρ , and M represent the laser spot area, focal length, density of the solid analyte, and relative molecular mass, respectively. N_A refers to Avogadro's number. The calculation for N_{surface} is as follows:

$$
N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}
$$
 Eq. (3)

In the equation, C, V, and $A_{substrate}$ represent the concentration, volume of the analyte solution, and substrate area, respectively. N_A refers to Avogadro's number, and A_{laser} represents the area of the laser spot.

Therefore, EF can be calculated as follows:

$$
EF = \frac{I_S}{I_R} \times \frac{N_{bulk}}{N_{surf}} = \frac{I_S}{I_R} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}
$$
 Eq. (4)

EF calculations for MB:

For β-Bi₂O₃ substrate, I_R =1523 (a.u.), h = 0.2 (mm), ρ = 0.6 (g/cm³), M = 356 (g/mol), $A_{\text{substrate}} = 4 \text{ (mm}^2)$, V = 10 (µL), C = 10⁻⁷ M, and I_S = 1986 (a.u.) (at 1624 cm⁻¹), the EF is estimated to be 3.94×10^6 .

For 5.20%Au/Bi₂O₃ sample, I_R = 1523 (a.u.), h = 0.2 (mm), ρ = 0.6 (g/cm³), M = 356 (g/mol), $A_{substrate} = 4$ (mm²), $V = 10$ (μ L), $C = 10^{-7}$ M, and $I_s = 4649$ (a.u.) (at 1624 cm⁻¹), the EF is estimated to be 9.22×10^6 .

The calculation for MO is similar to that for MB, and it is calculated:

For β-Bi₂O₃ sample, EF is estimated to be 2.96×10^4 .

For 5.20% Au/Bi_2O_3 sample, EF is estimated to be 1.15×10^5 .

Calculation of mass fractions from ICP-AES

A 150mg powder sample of 5.20%Au/Bi₂O₃ was taken and dissolved in 4mL aqua regia. The solution was then diluted with distilled water to a final volume of 15mL. Subsequently, it was further diluted 1000 times. The measurement results using ICP-AES showed that the concentration of Au was 0.520mg/L, which corresponds to a mass of 7.8mg of Au (m = $C \times V=7.8$ mg). The mass fraction of Au was calculated as ω = $m/m_0 = 5.20\%$. Similarly, when 2.80% Au/Bi₂O₃ and 10.1% Au/Bi₂O₃ samples were processed using the same method and their Au contents were measured, the respective concentrations were found to be 0.280mg/L and 1.010mg/L. This resulted in mass fractions of Au of 2.80% and 10.1% for 2.80%Au/Bi₂O₃ and 10.1%Au/Bi₂O₃, respectively.

Fig. S1 Size distribution histograms of Au NPs on [5.20%Au/Bi](mailto:5.20%25Au@bi2o3)₂O₃.

Fig. S2 TEM images of (A) 2.80% Au/Bi₂O₃, (B) 5.20% Au/Bi₂O₃ and (C) 10.1%Au/Bi2O³ (Insert is an enlarged view of the dotted box in (C)). (D) Elemental mapping image of Au of [10.1%Au/Bi](mailto:10.1%25Au@bi2o3)₂O₃.

Fig. S3 Photos taken by iphone of (A) β -Bi₂O₃, (B) 2.80%Au/Bi₂O₃, (C) 5.20%Au/Bi₂O₃ and (D) 10.1%Au/Bi₂O₃.

Fig. S4 Nitrogen adsorption-desorption isotherms of β-Bi2O³ and [5.20%Au/](mailto:5.20%25Au@)Bi2O³ (The

inset is pore-size distributions).

Fig. S5 Normal Raman spectra and SERS spectra of (A) MB and (B) MO.

Fig. S6 Calculated band structures of (A) 5.20% Au/Bi₂O₃ and (B) β -Bi₂O₃.

Fig. S7 Optimized model of [5.20%Au/](mailto:5.20%25Au@)Bi₂O₃ based on DFT calculation results.

Fig. S8 Degree of charge transfer (${}^{\rho}C_T$) in the composites and the SERS intensity ratio between the modes at 1443 cm⁻¹ (b₂) and 1395cm⁻¹ (a₁) as a function of the load mass of Au NPs on $β$ -Bi₂O₃.

Normal Raman (cm $^{-1}$)	SERS (cm $^{-1}$)	Mode assignment
503	594	δ (C-S-C)
	669	β (C-H)
776	769	β (C-H)
862	858	β (C-H)
	899	β (C-H)
951	950	β (C-H)
1036	1038	β (C-H)
1073	1071	β (C-H)
	1153	β (C-H)
	1179	$v(C-N)$
1305	1300	α (C-H)
1398	1395	$v_{sym}(C-N)$
1437	1443	$v_{asym}(C-N)$
1474	1468	$v_{asym}(C-N)$
1625	1624	$v(C-C)$

Table S1. Mode assignment of the Raman peaks for MB.[2,3]

ν=stretching, *α*= ring deformation, *β*=bending and *δ*=skeletal deformation.

Normal Raman (cm $^{-1}$)	SERS (cm $^{-1}$)	Peak assignment				
828	831	β (C-H) + β (C-C) + ν (C-C)				
921	925	$v(C-C)$				
1026	1025	β (C-C)				
1122	1112	β (C-C)				
1143	1144	β (C-C) +v(C-C) + β (C-N)				
1194	1196	$v(C-C) + \beta(C-C) + \beta(C-H)$				
1311	1313	$v(C-C) + \beta(C-H)$				
1362	1364	$v(C-C)$				
1396	1389	$v(N-N) +$				
1413	1410	$v(N-N)$				
1422	1422	$v(C-C)$				
1442	1444	$v(C-C) + \beta(C-H)$				
1590	1589	$v(C=C) + \beta(C=C)$				

Table S2. Mode assignment of the Raman peaks for MO.[4]

ν=stretching and *β*=bending.

Materials	Analyte molecules	LOD(M)	EF	
MoO ₂ /GO	MB	10^{-8}		$\mathbf{1}$
$S-MoO2$	MB	10^{-8}		$\overline{2}$
$TiO2-PCC$	MB	7.21×10^{-8}	3.63×10^{4}	3
CdSe-TiO ₂ IOS	MB	7×10^{-9}	1.46×10^{5}	$\overline{4}$
F_4TCNQ/MoS_2	MB	10^{-10}	2.531×10^{6}	5
MoO ₃ /MoO ₂	MB	10^{-9}	1.4×10^{5}	6
SnS ₂	MB	10^{-13}	3.0×10^{8}	τ
$Mo_{1-x}W_{x}S_{2}$	MB	10^{-8}		8
β -Bi ₂ O ₃	MB	10^{-9}	5.5×10^{6}	this work

Table S3. Performance comparison of SERS semiconductor materials for the detection of MB.

1 molybdenum oxide and graphene oxide nanocomposite.[5]

2 sulfur-doped MoO₂ nanospheres.[6]

3 TiO2-coated photonic crystal capillary.[7]

4 CdSe-sensitized $TiO₂$ composite film with inverse opal structure.[8]

5 F4TCNQ nanostructures grown on a 2D MoS₂ flake.[9]

6 MoO3/MoO² nanosheets.[10]

7 SnS2 microspheres.[11]

8 Mo1-*x*W*x*S² nanosheets.

Table S4. Performance comparison of SERS noble metal loaded composites for the detection of MB.

1 Ag nanoparticles/g- C_3N_4 .[12]

2 Fe3O4/GO/Ag composite microspheres.[13]

3 Ag nanoparticles /GO/g-CN nanohybrids.[14]

4 Cu2O/Ag heterostructures within the cellulose nanofibrils (CNFs) network.[15]

5 Ag nanocubes/GO composites.[16]

6 ZnO nanoplates/Ag nanoparticles.[17]

7 spherical Ag/synthetic hectorite(Hct) nanomaterials.[18]

8 gold [nanoparticles](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/nanoparticle) (AuNPs) grown on a magnetic sphere (MNPs)-MoS₂ microflower composite.[19]

Name	Peak BE	Height CPS	Height Ratio	Area CPS.eV	Area Ratio	FWHM fit param(eV)	L/G $Mix(\%)$ Product	Tail Mix (%)	Tail Height $\left(\frac{0}{0}\right)$	Tail Exponent
O1s Scan A	529.52	20164.61	0.95	53366.17	0.73	1.9	91.6	100		19.3813
						0.5:3.5				
O ₁ s Scan B	531.01	21716.06		48777.45		1.44	1.11	100		19.6366
						0.5 : 3.5				

Table S5. Peak fitting table of O 1s in Bi2O3.

Table S6. **Peak fitting table of O 1s in 5.20%Au/Bi2O3.**

Name	Peak BE	Height CPS	Height Ratio	Area CPS.eV	Area Ratio	FWHM fit param(eV)	L/G $Mix(\%)$ Product	Tail Mix (%)	Tail Height $\left(\frac{0}{0}\right)$	Tail Exponent
O ₁ s Scan A	529.55	40164.61		95085.96		1.9		0	100	0.0551
						0.5:3.5				
O1s Scan B	530.76	13716.06	0.34	41931.1	0.44	1.87	75.26	2.59	97.50	0.0389
						0.5 : 3.5				

Reference

[1] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study, J. Phys. Chem. C 111 (2007) 13794–13803. https://doi.org/10.1021/jp0687908.

[2] G.-N. Xiao, S.-Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles, Chem. Phys. Lett. 447 (2007) 305–309. https://doi.org/10.1016/j.cplett.2007.09.045.

[3] C. Li, Y. Huang, K. Lai, B.A. Rasco, Y. Fan, Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Control 65 (2016) 99–105. https://doi.org/10.1016/j.foodcont.2016.01.017.

[4] O. Prakash, S. Kumar, P. Singh, V. Deckert, S. Chatterjee, A.K. Ghosh, R.K. Singh, Surface-enhanced Raman scattering characteristics of CuO : Mn/Ag heterojunction probed by methyl orange: effect of Mn^{2+} doping, J. Raman Spectrosc. 47 (2016) 813–818. https://doi.org/10.1002/jrs.4904.

[5] J. Chen, K. Sun, Y. Zhang, D. Wu, Z. Jin, F. Xie, X. Zhao, X. Wang, Plasmonic MoO² nanospheres assembled on graphene oxide for highly sensitive SERS detection of organic pollutants, Anal. Bioanal. Chem. 411 (2019) 2781–2791. https://doi.org/10.1007/s00216-019-01751-z.

[6] X. Zhou, X. Zhao, S. Gu, F. Xie, X. Wang, Z. Tang, Sulfur doped $MoO₂$ hollow nanospheres as a highly sensitive SERS substrate for multiple detections of organic pollutants, Anal. Methods 13 (2021) 2679–2687. https://doi.org/10.1039/D1AY00502B.

[7] $X. Wang, J. Li, X. Gao, Y. Shen, A. Xie, Ordered CdSe-sensitized TiO₂ inverse opal$ film as multifunctional surface-enhanced Raman scattering substrate, Appl. Surf. Sci. 463 (2019) 357–362. https://doi.org/10.1016/j.apsusc.2018.08.216.

[8] B. Liu, K. Wang, B. Gao, J. Lu, H. Li, X. Zhao, TiO₂-Coated Silica Photonic Crystal Capillaries for Plasmon-Free SERS Analysis, ACS Appl. Nano Mater. 2 (2019) 3177–3186. https://doi.org/10.1021/acsanm.9b00492.

[9] M. Liu, W. Liu, W. Zhang, P. Duan, M. Shafi, C. Zhang, X. Hu, G. Wang, W. Zhang, π -Conjugated Small Organic Molecule-Modified 2D MoS₂ with a Charge-Localization Effect Enabling Direct and Sensitive SERS Detection, ACS Appl. Mater. Interfaces 14 (2022) 56975–56985. https://doi.org/10.1021/acsami.2c17277.

[10] P. Ren, W. Zhou, X. Ren, X. Zhang, B. Sun, Y. Chen, Q. Zheng, J. Li, W. Zhang, Improved surface-enhanced Raman scattering (SERS) sensitivity to molybdenum oxide nanosheets via the lightning rod effect with application in detecting methylene blue, Nanotechnology 31 (2020) 224002. https://doi.org/10.1088/1361-6528/ab758b.

[11] Y. Peng, C. Lin, Y. Li, Y. Gao, J. Wang, J. He, Z. Huang, J. Liu, X. Luo, Y. Yang, Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS₂ SERS biosensors with capillary effect, Matter 5 (2022) 694–709. https://doi.org/10.1016/j.matt.2021.11.028.

[12] S. Li, P. Liang, Q. Chen, B. Sun, Z. Shang, J. Huang, M. Zou, X. Qi, J. Wu, One-pot fabrication of $Mo_{1-x}W_xS_2$ alloy nanosheets as SERS substrates with highly Raman enhancement effect and long-term stability, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 279 (2022) 121465. https://doi.org/10.1016/j.saa.2022.121465.

[13] J. He, G. Song, X. Wang, L. Zhou, J. Li, Multifunctional magnetic $Fe₃O₄/GO/Ag$ composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin, J. Alloys Compd. 893 (2022) 162226. https://doi.org/10.1016/j.jallcom.2021.162226.

[14] S. Santhoshkumar, E. Murugan, Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg^{2+} ions in aqueous solution, Appl. Surf. Sci. 553 (2021) 149544. https://doi.org/10.1016/j.apsusc.2021.149544.

[15] Y. Luo, L. Xing, C. Hu, W. Zhang, X. Lin, J. Gu, Facile synthesis of nanocellulosebased $Cu₂O/Ag$ heterostructure as a surface-enhanced Raman scattering substrate for trace dye detection, Int. J. Biol. Macromol. 205 (2022) 366–375. https://doi.org/10.1016/j.ijbiomac.2022.02.102.

[16] J. He, X. Li, J. Li, Facile construction of silver nanocubes/graphene oxide composites for highly sensitive SERS detection of multiple organic contaminants by a portable Raman spectrometer, J. Environ. Chem. Eng. 10 (2022) 108278. https://doi.org/10.1016/j.jece.2022.108278.

[17] T.T.H. Pham, X.H. Vu, N.D. Dien, T.T. Trang, T.T.K. Chi, P.H. Phuong, N.T. Nghia, Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue, RSC Adv. 12 (2022) 7850–7863. https://doi.org/10.1039/D2RA00620K.

[18] C.P. Fu, K.J. Li, J.Y. He, W.H. Yu, C.H. Zhou, Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection, Anal. Methods 15 (2023) 1001–1015. https://doi.org/10.1039/D2AY01262F.

[19] H. Lai, G. Ma, W. Shang, D. Chen, Y. Yun, X. Peng, F. Xu, Multifunctional magnetic sphere-MoS₂@Au hybrid for surface-enhanced Raman scattering detection and visible light photo-Fenton degradation of aromatic dyes, Chemosphere 223 (2019) 465–473. https://doi.org/10.1016/j.chemosphere.2019.02.073.