Supplementary Information

Au nanoparticles decorated β -Bi₂O₃ as highlysensitive SERS substrate for detection of methylene blue and methyl orange

Binbin Chen^{a,1}, Lizhu Fan^{b,1}, Viktoria Golovanova^c, Chunyu Li^f, Kaiwen Wang^a, Jinshu Wang^e, Dawei Pang^a*, Zhouhao Zhu^d**, Peijie Ma^a***

^a Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials
 Science & Engineering, Beijing University of Technology, Beijing, 100124, China
 ^b National Key Laboratory of Integrated Circuits and Microsystems, Chongqing, 401332, China

^c South-Ukrainian National University, Staroportofrankovskaya Str. 26, 65008, Odessa, Ukraine

^d College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China

^e School of Public Health and Health Sciences, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China

^f Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany

* Corresponding author.

** Corresponding author.

*** Corresponding author.

E-mail addresses: gavinpang@bjut.edu.cn (D. Pang), zhuzhouhao98@foxmail.com (Z. Zhu), peijiema@bjut.edu.cn (P. Ma).

¹ These authors contributed equally to this work.

Calculation of enhancement factors (EF)

Enhancement Factor (EF), as an important parameter, is evaluated to quantify the enhancement effect of a substrate using the following formula [1]:

In the equation, I_S and I_R represent the Raman signal intensities of the molecule MB with and without the presence of the SERS-enhancing substrate, respectively. N_{bulk} is the average number of MB molecules detected in the absence of SERS measurements, and N_{surf} is the average number of MB molecules detected in SERS measurements. The calculation method for N_{bulk} is as follows:

$$N_{bulk} = \frac{A_{laser} \times h \times \rho}{M} \times N_A$$
. Eq. (2)

In the equation, A_{laser} , h, ρ , and M represent the laser spot area, focal length, density of the solid analyte, and relative molecular mass, respectively. N_A refers to Avogadro's number. The calculation for $N_{surface}$ is as follows:

$$N_{surface} = \frac{C \times V}{A_{substrate}} \times N_A \times A_{laser}$$
. Eq. (3)

In the equation, C, V, and $A_{substrate}$ represent the concentration, volume of the analyte solution, and substrate area, respectively. N_A refers to Avogadro's number, and A_{laser} represents the area of the laser spot.

Therefore, EF can be calculated as follows:

$$EF = \frac{I_S}{I_R} \times \frac{N_{bulk}}{N_{surf}} = \frac{I_S}{I_R} \times \frac{h \times \rho \times A_{substrate}}{M \times C \times V}.$$
 Eq. (4)

EF calculations for MB:

For β -Bi₂O₃ substrate, I_R =1523 (a.u.), h = 0.2 (mm), ρ = 0.6 (g/cm³), M = 356 (g/mol), A_{substrate} = 4 (mm²), V = 10 (µL), C =10⁻⁷ M, and I_S = 1986 (a.u.) (at 1624 cm⁻¹), the EF is estimated to be 3.94 × 10⁶.

For 5.20%Au/Bi₂O₃ sample, $I_R = 1523$ (a.u.), h = 0.2 (mm), $\rho = 0.6$ (g/cm³), M = 356 (g/mol), $A_{substrate} = 4$ (mm²), V = 10 (µL), $C = 10^{-7}$ M, and $I_S = 4649$ (a.u.) (at 1624 cm⁻¹), the EF is estimated to be 9.22×10^6 .

The calculation for MO is similar to that for MB, and it is calculated:

For β -Bi₂O₃ sample, EF is estimated to be 2.96 × 10⁴.

For 5.20%Au/Bi₂O₃ sample, EF is estimated to be 1.15×10^5 .

Calculation of mass fractions from ICP-AES

A 150mg powder sample of 5.20%Au/Bi₂O₃ was taken and dissolved in 4mL aqua regia. The solution was then diluted with distilled water to a final volume of 15mL. Subsequently, it was further diluted 1000 times. The measurement results using ICP-AES showed that the concentration of Au was 0.520mg/L, which corresponds to a mass of 7.8mg of Au (m = C × V=7.8mg). The mass fraction of Au was calculated as $\omega = m/m_0 = 5.20\%$. Similarly, when 2.80%Au/Bi₂O₃ and 10.1%Au/Bi₂O₃ samples were processed using the same method and their Au contents were measured, the respective concentrations were found to be 0.280mg/L and 1.010mg/L. This resulted in mass fractions of Au of 2.80% and 10.1% for 2.80%Au/Bi₂O₃ and 10.1%Au/Bi₂O₃, respectively.

Fig. S1 Size distribution histograms of Au NPs on 5.20%Au/Bi₂O₃.

Fig. S2 TEM images of (A) 2.80%Au/Bi₂O₃, (B) 5.20%Au/Bi₂O₃ and (C) 10.1%Au/Bi₂O₃ (Insert is an enlarged view of the dotted box in (C)). (D) Elemental mapping image of Au of 10.1%Au/Bi₂O₃.

Fig. S3 Photos taken by iphone of (A) β -Bi₂O₃, (B) 2.80%Au/Bi₂O₃, (C) 5.20%Au/Bi₂O₃ and (D) 10.1%Au/Bi₂O₃.

Fig. S4 Nitrogen adsorption-desorption isotherms of β -Bi₂O₃ and 5.20%Au/Bi₂O₃ (The

inset is pore-size distributions).

Fig. S5 Normal Raman spectra and SERS spectra of (A) MB and (B) MO.

Fig. S6 Calculated band structures of (A) 5.20%Au/Bi₂O₃ and (B) β -Bi₂O₃.

Fig. S7 Optimized model of 5.20%Au/Bi₂O₃ based on DFT calculation results.

Fig. S8 Degree of charge transfer (${}^{\rho}CT$) in the composites and the SERS intensity ratio between the modes at 1443 cm⁻¹ (b₂) and 1395cm⁻¹ (a₁) as a function of the load mass of Au NPs on β -Bi₂O₃.

Normal Raman (cm ⁻¹)	SERS (cm ⁻¹)	Mode assignment
503	594	$\delta(\text{C-S-C})$
	669	β (C-H)
776	769	β (C-H)
862	858	β (C-H)
	899	β (C-H)
951	950	β (C-H)
1036	1038	β (C-H)
1073	1071	β (C-H)
	1153	β (C-H)
	1179	v(C-N)
1305	1300	$\alpha_{(C-H)}$
1398	1395	v_{sym} (C-N)
1437	1443	v _{asym} (C-N)
1474	1468	v _{asym} (C-N)
1625	1624	v(C-C)

 Table S1. Mode assignment of the Raman peaks for MB.[2,3]

v=stretching, α = ring deformation, β =bending and δ =skeletal deformation.

Normal Raman (cm ⁻¹)	SERS (cm ⁻¹)	Peak assignment			
828	831	β (C–H) + β (C–C) + ν (C–C)			
921	925	v(C–C)			
1026	1025	β (C–C)			
1122	1112	β (C–C)			
1143	1144	β (C–C) + ν (C–C) + β (C–N)			
1194	1196	$v(C-C) + \beta(C-C) + \beta(C-H)$			
1311	1313	$v(C-C) + \beta(C-H)$			
1362	1364	v(C–C)			
1396	1389	v(N–N) +			
1413	1410	v(N–N)			
1422	1422	v(C–C)			
1442	1444	$v(C-C) + \beta(C-H)$			
1590	1589	ν (C=C) + β (C=C)			

 Table S2. Mode assignment of the Raman peaks for MO.[4]

v=stretching and β =bending.

Materials	Analyte molecules	LOD(M)	EF	
MoO ₂ /GO	MB	10 ⁻⁸	/	1
S-MoO ₂	MB	10^{-8}	/	2
TiO ₂ –PCC	MB	7.21×10 ⁻⁸	3.63×10^{4}	3
CdSe-TiO ₂ IOS	MB	7×10 ⁻⁹	1.46×10^{5}	4
F4TCNQ/MoS2	MB	10^{-10}	2.531×10^{6}	5
MoO ₃ /MoO ₂	MB	10 ⁻⁹	1.4×10^{5}	6
SnS_2	MB	10 ⁻¹³	3.0×10^{8}	7
$Mo_{1-x}W_xS_2$	MB	10^{-8}	/	8
β-Bi ₂ O ₃	MB	10 ⁻⁹	$5.5 imes 10^6$	this work

Table S3. Performance comparison of SERS semiconductor materials for the detection of MB.

1 molybdenum oxide and graphene oxide nanocomposite.[5]

2 sulfur-doped MoO₂ nanospheres.[6]

3 TiO₂-coated photonic crystal capillary.[7]

4 CdSe-sensitized TiO₂ composite film with inverse opal structure.[8]

5 F4TCNQ nanostructures grown on a 2D MoS_2 flake.[9]

6 MoO₃/MoO₂ nanosheets.[10]

7 SnS2 microspheres.[11]

8 $Mo_{1-x}W_xS_2$ nanosheets.

Materials	Noble metal(wt%)	Analyte molecules	LOD(M)	EF	
AgNPs@g-C ₃ N ₄	2.36%	MB	10 ⁻¹²	1.4×10^{8}	1
Fe ₃ O ₄ /GO/Ag	6.90%	MB	10 ⁻⁹	/	2
AgNPs/GO/g-CN	10.70%	MB	10^{-12}	$6.59 imes 10^8$	3
CNF- Cu ₂ O/Ag	13.07%	MB	10 ⁻⁸	$4.0 imes 10^4$	4
Ag/GO	30.84	MB	10^{-10}	/	5
ZnO/Ag	39.14%	MB	10 ⁻⁹	6.2×10^{6}	6
Ag@Hct	50.89%	MB	10 ⁻¹²	2.6×10^4	7
MNPs-MoS2@Au	68.84%	MB	10 ⁻⁹	/	8
Au/Bi_2O_3	5.20%	MB	10-11	9.2×10^{6}	this work

Table S4. Performance comparison of SERS noble metal loaded composites for the detection of MB.

1 Ag nanoparticles/g-C₃N₄.[12]

2 Fe₃O₄/GO/Ag composite microspheres.[13]

3 Ag nanoparticles /GO/g-CN nanohybrids.[14]

4 Cu₂O/Ag heterostructures within the cellulose nanofibrils (CNFs) network.[15]

5 Ag nanocubes/GO composites.[16]

6 ZnO nanoplates/Ag nanoparticles.[17]

7 spherical Ag/synthetic hectorite(Hct) nanomaterials.[18]

8 gold nanoparticles (AuNPs) grown on a magnetic sphere (MNPs)-MoS₂ microflower composite.[19]

Name	Peak BE	Height CPS	Height Ratio	Area CPS.eV	Area Ratio	FWHM fit param (eV)	L/G Mix(%) Product	Tail Mix (%)	Tail Height (%)	Tail Exponent
O1s Scan A	529.52	20164.61	0.95	53366.17	0.73	1.9	91.6	100	0	19.3813
						0.5:3.5				
O1s Scan B	531.01	21716.06	1	48777.45	1	1.44	1.11	100	0	19.6366
						0.5 : 3.5				

Table S5. Peak fitting table of O 1s in Bi_2O_3 .

Table S6. Peak fitting table of O 1s in 5.20%Au/Bi₂O₃.

Name	Peak BE	Height CPS	Height Ratio	Area CPS.eV	Area Ratio	FWHM fit param (eV)	L/G Mix(%) Product	Tail Mix (%)	Tail Height (%)	Tail Exponent
O1s Scan A	529.55	40164.61	1	95085.96	1	1.9	0	0	100	0.0551
						0.5:3.5				
O1s Scan B	530.76	13716.06	0.34	41931.1	0.44	1.87	75.26	2.59	97.50	0.0389
						0.5 : 3.5				

Reference

[1] E.C. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface Enhanced Raman
 Scattering Enhancement Factors: A Comprehensive Study, J. Phys. Chem. C 111 (2007)
 13794–13803. https://doi.org/10.1021/jp0687908.

[2] G.-N. Xiao, S.-Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles, Chem. Phys. Lett. 447 (2007) 305–309. https://doi.org/10.1016/j.cplett.2007.09.045.

[3] C. Li, Y. Huang, K. Lai, B.A. Rasco, Y. Fan, Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Control 65 (2016)
 99–105. https://doi.org/10.1016/j.foodcont.2016.01.017.

[4] O. Prakash, S. Kumar, P. Singh, V. Deckert, S. Chatterjee, A.K. Ghosh, R.K. Singh, Surface-enhanced Raman scattering characteristics of CuO : Mn/Ag heterojunction probed by methyl orange: effect of Mn²⁺ doping, J. Raman Spectrosc. 47 (2016) 813–818. https://doi.org/10.1002/jrs.4904.

[5] J. Chen, K. Sun, Y. Zhang, D. Wu, Z. Jin, F. Xie, X. Zhao, X. Wang, Plasmonic MoO₂ nanospheres assembled on graphene oxide for highly sensitive SERS detection of organic pollutants, Anal. Bioanal. Chem. 411 (2019) 2781–2791. https://doi.org/10.1007/s00216-019-01751-z.

[6] X. Zhou, X. Zhao, S. Gu, F. Xie, X. Wang, Z. Tang, Sulfur doped MoO₂ hollow nanospheres as a highly sensitive SERS substrate for multiple detections of organic pollutants, Anal. Methods 13 (2021) 2679–2687. https://doi.org/10.1039/D1AY00502B. [7] X. Wang, J. Li, X. Gao, Y. Shen, A. Xie, Ordered CdSe-sensitized TiO₂ inverse opal film as multifunctional surface-enhanced Raman scattering substrate, Appl. Surf. Sci. 463 (2019) 357–362. https://doi.org/10.1016/j.apsusc.2018.08.216.

[8] B. Liu, K. Wang, B. Gao, J. Lu, H. Li, X. Zhao, TiO₂-Coated Silica Photonic Crystal Capillaries for Plasmon-Free SERS Analysis, ACS Appl. Nano Mater. 2 (2019) 3177–3186. https://doi.org/10.1021/acsanm.9b00492.

[9] M. Liu, W. Liu, W. Zhang, P. Duan, M. Shafi, C. Zhang, X. Hu, G. Wang, W. Zhang, π-Conjugated Small Organic Molecule-Modified 2D MoS₂ with a Charge-Localization Effect Enabling Direct and Sensitive SERS Detection, ACS Appl. Mater. Interfaces 14 (2022) 56975–56985. https://doi.org/10.1021/acsami.2c17277.

[10] P. Ren, W. Zhou, X. Ren, X. Zhang, B. Sun, Y. Chen, Q. Zheng, J. Li, W. Zhang, Improved surface-enhanced Raman scattering (SERS) sensitivity to molybdenum oxide nanosheets via the lightning rod effect with application in detecting methylene blue, Nanotechnology 31 (2020) 224002. https://doi.org/10.1088/1361-6528/ab758b.

[11] Y. Peng, C. Lin, Y. Li, Y. Gao, J. Wang, J. He, Z. Huang, J. Liu, X. Luo, Y. Yang, Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS₂ SERS biosensors with capillary effect, Matter 5 (2022) 694–709. https://doi.org/10.1016/j.matt.2021.11.028.

[12] S. Li, P. Liang, Q. Chen, B. Sun, Z. Shang, J. Huang, M. Zou, X. Qi, J. Wu, One-pot fabrication of $Mo_{1-x}W_xS_2$ alloy nanosheets as SERS substrates with highly Raman enhancement effect and long-term stability, Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 279 (2022) 121465. https://doi.org/10.1016/j.saa.2022.121465.

[13] J. He, G. Song, X. Wang, L. Zhou, J. Li, Multifunctional magnetic Fe₃O₄/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin, J. Alloys Compd. 893 (2022) 162226.
 https://doi.org/10.1016/j.jallcom.2021.162226.

[14] S. Santhoshkumar, E. Murugan, Rationally designed SERS AgNPs/GO/g-CN nanohybrids to detect methylene blue and Hg²⁺ ions in aqueous solution, Appl. Surf. Sci. 553 (2021) 149544. https://doi.org/10.1016/j.apsusc.2021.149544.

[15] Y. Luo, L. Xing, C. Hu, W. Zhang, X. Lin, J. Gu, Facile synthesis of nanocellulosebased Cu₂O/Ag heterostructure as a surface-enhanced Raman scattering substrate for trace dye detection, Int. J. Biol. Macromol. 205 (2022) 366–375. https://doi.org/10.1016/j.ijbiomac.2022.02.102.

[16] J. He, X. Li, J. Li, Facile construction of silver nanocubes/graphene oxide composites
for highly sensitive SERS detection of multiple organic contaminants by a portable Raman
spectrometer, J. Environ. Chem. Eng. 10 (2022) 108278.
https://doi.org/10.1016/j.jece.2022.108278.

[17] T.T.H. Pham, X.H. Vu, N.D. Dien, T.T. Trang, T.T.K. Chi, P.H. Phuong, N.T. Nghia, Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue, RSC Adv. 12 (2022) 7850–7863. https://doi.org/10.1039/D2RA00620K.

[18] C.P. Fu, K.J. Li, J.Y. He, W.H. Yu, C.H. Zhou, Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection, Anal. Methods 15 (2023) 1001–1015. https://doi.org/10.1039/D2AY01262F. [19] H. Lai, G. Ma, W. Shang, D. Chen, Y. Yun, X. Peng, F. Xu, Multifunctional magnetic sphere-MoS₂@Au hybrid for surface-enhanced Raman scattering detection and visible light photo-Fenton degradation of aromatic dyes, Chemosphere 223 (2019) 465–473. https://doi.org/10.1016/j.chemosphere.2019.02.073.