Supporting Information

Figure S1 the fresh preparation of MnO_2 nanosheeets and corresponding *Dindal* phenomenon.

Figure S2 XRD (A) and FTIR (B) of MnO_2 nanosheets; XPS spectrum of MnO_2 nanosheets for Mn 2p (C) and O 1s (D)

Figure S3 (A) the fresh-squeezing orange juice; large scale preparation of MnO_2 nanosheets: (B)1.6 g of KMnO₄ dissolved in 1.6 L aqueous solution; (C) after reaction with orange juice for 30 minutes

Figure S4 absorbance values of MnO_2 nanosheets-TMB system with different concentration of TMB (A) and different incubation time (B)

Figure S5 UV-vis absorbance spectrum of MnO_2 nanosheets incubated with different concentration of GSH from 0.25 μ M to 125 μ M (A) and corresponding digital

photographs (B); the calibration curve between concentration of GSH and absorbance value at 350 nm

Figure S6 optimizing of buffer pH (A), incubation temperature (B) and time(C)

Figure S7 Specificity of MnO2 nanosheets-TMB system for biosensing of GSH

Figure S8 optimizing experimental conditions of the colorimetric immunosensor: (A) pH; (B) incubation time

Figure S9 The specificity, stability and reproducibility of colorimetric immunosensor

0.001 ng/mL	0.005 ng/mL	0.01 ng/mL	0.05 ng/mL
	40 DESERTED R (10) G (17) B (10) (17) B (10) (16) B (10) B (10)	2007/2006/02/2007 PERSON CITIL IN (107) PERSONAL IN 2006 2010 1070/2017/11 1070/2017/2017/2017/2017/2017/2017/2017/	
	анае жеза 90	RHEE REDE 95	READ RADE RA
0.1 ng/mL	0.5 ng/mL	5 ng/mL	10 ng/mL
Adjense sons Constanting Adjense sons Constanting Constan	40078645048.00 (100780750480) (1007807600 (10078080 (10078080 (10078080 (10078600 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (100786000 (1007860000 (100786000 (100786000 (100786000000000000 (1	Autoretanista (199) 51 (9) (19) 15 (9)	1011 4 (107) 8 (0) (1010 8 (0)
(21.80 (8508) (477)	ining Ream aa	(0.86) (9508) (94	REA PEDE 94

Figure S10 smartphone-enabled immunoassay of various concentration of cTnI from 0.001 ng mL^{-1} to 10 ng mL⁻¹

Method	Material	Detection limit	reference
Colorimetric	Cu/CuO-reduced graphene oxide	32 nM	[1]
Fluorometric	BPQDs@MnO2	35 nM	[2]
Magnetic/Fluorometric	Carbon dots/MnO ₂	0.6 µM	[3]
Fluorometric	$C_{3}N_{4}/Cu^{2+}$	20 nM	[4]
Fluorometric	AuNCs@MnO ₂	0.67 μΜ	[5]
Luminescent	MnO ₂ /Iridium	0.13 µM	[6]
Fluorometric	MnO ₂ –Si quantum dots	0.153 μΜ	[7]
Fluorometric	MnO ₂ nanosheets/carbon dots	22 nM	[8]

Table S1 the comparison of different methods for biosensing of GSH

Ratiometric fluorometric	Carbon dots	20 nM	[9]
Colotimetric	MnO ₂ nanosheets	0.08 nM	This work

Method	Material	Detection limit	reference
Electrochemical aptasensor	DNA nanotetrahedron	10 pg mL ⁻¹	[10]
Localize surface plasmon resonance	peptide-modified		
	plasmonic gold nanohole	1.8 ng mL ⁻¹	[11]
Impedimetric immonosensor	Graphene-multi- walled carbon nanotube	0.94 pg mL ⁻¹	[12]
Colorimetric	Peptide Functionalized Gold Nanoparticles	0.2 ng mL ⁻¹	[13]
Electrochemical aptasensor	Aptamer candidates	24 pg mL ⁻¹	[14]
Electrode biochip	Biofunctionalized Rebar Graphene	1 pg mL ⁻¹	[15]
Electrochemical biosensors	TdT assisted aptamer	40 pg mL ⁻¹	[16]
Electrochemical immunosensor	Carbon nanofiber	0.2 ng mL ⁻¹	[17]
Colorimetric	MnO ₂ nanosheets	0.70 pg mL ⁻¹	This work

Table S2 the comparison of different methods for biosensing of cTnI

References

[1] P. Singh, P. Nath, R.K. Arun, S. Mandal, N. Chanda, Novel synthesis of a mixed Cu/CuO-reduced graphene oxide nanocomposite with enhanced peroxidase-like

catalytic activity for easy detection of glutathione in solution and using a paper strip, RSC Advances 6 (2016) 92729-92738.

[2] H. Li, R. Xie, C. Huang, J. He, P. Yang, J. Tao, B. Lin, P. Zhao, Black phosphorus quantum dots nanocomposites based activatable bimodal imaging and determination of intracellular glutathione, Sensors and Actuators B: Chemical 321 (2020) 128518.

[3] Y. Xu, X. Chen, R. Chai, C. Xing, H. Li, X.-B. Yin, A magnetic/fluorometric bimodal sensor based on a carbon dots–MnO2 platform for glutathione detection, Nanoscale 8 (2016) 13414-13421.

[4] C. Yang, X. Wang, H. Liu, S. Ge, J. Yu, M. Yan, On–off–on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride (gC 3 N 4)–Cu 2+ strategy, New J. Chem. 41(2017) 3374-3379.

[5] H. Yao, D. Jiang, G. Dong, J. Sun, S. Sun, L. Li, F. Zheng, W. Xiong, Near infrared imaging of intracellular GSH by AuNCs@MnO2 core-shell nanoparticles based on the absorption competition mechanism, Analyst 146 (2021) 5115-5123.

[6] Z.-Z. Dong, L. Lu, C.-N. Ko, C. Yang, S. Li, M.-Y. Lee, C.-H. Leung, D.-L. Ma, A MnO 2 nanosheet-assisted GSH detection platform using an iridium (iii) complex as a switch-on luminescent probe, Nanoscale 9(2017) 4677-4682.

[7] H. Ma, X. Li, X. Liu, M. Deng, X. Wang, A. Iqbal, W. Liu, W. Qin, Fluorescent glutathione probe based on MnO2–Si quantum dots nanocomposite directly used for

intracellular glutathione imaging, Sensors and Actuators B: Chemical 255 (2018) 1687-1693.

[8] Y. Wang, K. Jiang, J. Zhu, L. Zhang, H. Lin, A FRET-based carbon dot–MnO2 nanosheet architecture for glutathione sensing in human whole blood samples, Chem. Commun. 51 (2015) 12748-12751.

[9] S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You, Y. Wu, Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury (II) ions and glutathione, RSC Advances 6 (2016) 103169-103177.

[10] D. Sun, Z. Luo, J. Lu, S. Zhang, T. Che, Z. Chen, L. Zhang, Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure, Biosensors and Bioelectronics 134 (2019) 49-56.

[11] J. Zhang, Y. Wang, T.I. Wong, X. Liu, X. Zhou, B. Liedberg, Electrofocusingenhanced localized surface plasmon resonance biosensors, Nanoscale 7(2015) 17244-17248.

[12] S. Singal, A.K. Srivastava, S. Dhakate, A.M. Biradar, Electroactive graphenemulti-walled carbon nanotube hybrid supported impedimetric immunosensor for the detection of human cardiac troponin-I, Rsc Advances 5 (2015) 74994-75003.

[13] X. Liu, Y. Wang, P. Chen, A. McCadden, A. Palaniappan, J. Zhang, B. Liedberg,Peptide functionalized gold nanoparticles with optimized particle size and

concentration for colorimetric assay development: Detection of cardiac troponin I, Acs Sensors 1(2016) 1416-1422.

[14] H. Jo, H. Gu, W. Jeon, H. Youn, J. Her, S.-K. Kim, J. Lee, J.H. Shin, C. Ban, Electrochemical aptasensor of cardiac troponin I for the early diagnosis of acute myocardial infarction, Anal. Chem. 87 (2015) 9869-9875.

[15] S.K. Tuteja, P. Sabherwal, A. Deep, R. Rastogi, A.K. Paul, C.R. Suri, Biofunctionalized rebar graphene (f-RG) for label-free detection of cardiac marker troponin I, ACS applied materials & interfaces 6 (2014) 14767-14771.

[16] M. Lang, D. Luo, G. Yang, Q. Mei, G. Feng, Y. Yang, Z. Liu, Q. Chen, L. Wu, An ultrasensitive electrochemical sensing platform for the detection of cTnI based on aptamer recognition and signal amplification assisted by TdT, RSC Adv 10 (2020) 36396-36403.

[17] A. Periyakaruppan, R.P. Gandhiraman, M. Meyyappan, J.E. Koehne, Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays, Anal. Chem. 85 (2013) 3858-3863.