Supporting information for:

Insights into the terahertz response of L-Glutamic acid and its receptor

Yu Wu,^{a,b,c} Zhongjie Zhu,*^b Jinrong Yang,^d Jie Wang,^b Te Ji,^b Huachun Zhu,^b Weiwei Peng,^b Min Chen,^{a,b} and Hongwei Zhao*^{a,b}

^a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

^b Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, China

^d East China Normal University, Shanghai 200241, China

* E-mail address: zhaohw@sari.ac.cn zhuzj@sari.ac.cn

Fig. S1 The PXRD experimental (blue line) and calculated (red line) spectra of L-Glu.

Fig. S2 Schematic diagram of unit cell structure of L-Glu.

Fig. S3 THz absorption spectra of L-Glu obtained by THz-TDS (red line) and FTIR (blue line). The absorption in the grey area is for reference only.

Fig. S4 (a) The coordinate system determined by the three principal axes of a single L-Glu molecule, and (b) the coordinate system of L-Glu unit cell.

Table S1 List of surroundin	g molecules that were	e included in molecular	models used in ONIOM
-----------------------------	-----------------------	-------------------------	----------------------

GLU A 14 MM	HIS A 88 MM	SER A 114 MM	
LEU A 115 MM	THR A 116 MM	ARG A 121 MM	
VAL A 169 MM	SER A 173 MM	THR A 174 MM	
GLU A 175 MM	TYR A 214 MM	ASP A 215 MM	
TYR A 245 MM	HOH A 316 MM	HOH A 320 MM	
HOH A 321 MM	HOH A 338 MM	HOH A 365 MM	
GLU A1001 QM			

calculation

Fig. S5 Schematic diagram of normal modes of different water molecules in the NMDAR-L-Glu complex at specific frequencies.

Fig. S6 (a) Structure diagram of the NMDAR-L-Glu[©] complex, where L-Glu[©] stands for HOOC-CH(NH₂)-(CH₂)₂-COO[©]. (b) THz spectra of NMDAR-L-Glu[©] complex and NMDAR and L-Glu[©]

in the range of 0.5~18 THz obtained by theoretical calculation, the spectral intensity of L-Glu \ominus is amplified to 12 times to facilitate comparison.

Fig. S7 Schematic diagram of normal modes of different water molecules in the NMDAR-L-Glu[©] complex at specific frequencies.

Fig. S8 Influence of water molecules on the conformation and binding energy of NMDAR-L-Glu⊖ complex.

Fig. S9 (a) Structure diagram of the NMDAR-L-@Glu complex, where L-@Glu stands for @OOC-CH(NH₂)-(CH₂)₂-COOH). (b) THz spectra of NMDAR-L-@Glu complex and NMDAR and L-@Glu in the range of 0.5~18 THz obtained by theoretical calculation, the spectral intensity of L-@Glu is amplified to 7 times to facilitate comparison.

 $w_2\,w_3\,17.39~THz$

Fig. S11 Influence of water molecules on the conformation and binding energy of NMDAR-L-©Glu complex.