Electronic Supplementary Information (ESI)

A Green Approach to Nanoplastics Detection: SERS with Untreated Filter

Paper for Polystyrene Nanoplastics

Boonphop Chaisrikhwun,^{a,b} Mary Jane Balani,^{a,b,c} Sanong Ekgasit,^{a,b} Yunfei Xie,^d Yukihiro Ozaki,^{e,*} Prompong Pienpinijtham^{a,b,c,*} ^aSensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand ^bNational Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand ^cGreen Chemistry and Sustainability Program, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand ^dSchool of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, 214122, China ^eSchool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan

*Corresponding author: yukiz89016@gmail.com; prompong.p@chula.ac.th

Figure S1 OM images reveal the surface of the filter paper after filtration with (a) colloidal PSNSs, (b) colloidal AgNPs, and (c) PSNSs/AgNPs with MgCl₂ as aggregating agents.

Figure S2 (a) Changes in the extinction spectra of PS/AgNPs upon particle aggregation after adding different aggregating agents. (b) Changes in the color of PSNSs and AgNPs mixture after the addition of different aggregating agents.

PS nanosphere size (nm)	LOD (µg/mL)	correlation coefficient (r ²)	equation of the line	linear range (µg/mL)
100	0.3103	0.9966	y = 30.884x + 81.49	0.5–10.0
300	0.5358	0.9976	y = 33.957x + 67.26	0.5-8.0
460	0.7613	0.9952	y = 30.100x + 72.78	1.0-8.0
600	1.0473	0.9925	y = 21.863x + 98.149	2.0–10.0
800	1.4218	0.9895	y = 19.222x + 104.38	2.0–12.0

Table S1 LODs of various sizes of PS obtained using the proposed method.

Figure S3 Plots of the SERS intensity at 1002 cm⁻¹ vs the concentration of (a) 100-nm, (b) 300-nm, (c) 460-nm, (e) 600-nm, and (f) 800-nm PSNSs. Error bars indicate standard deviations of three measurements.

Figure S4 SERS spectra of (a) 100-nm, (b) 300-nm, (c) 460-nm, (d) 600-nm, and (e) 800-nm PSNSs (10 µg/mL) in the presence of different interferences (0.1 wt%).

Figure S5 (a) The prepared SERS samples spiked with 0.1 wt% Triton-X and DTAB as interferences. Despite the discoloration observed after adding 1.0 mL of MgCl₂ solution, no particle aggregation was recorded. (b) No aggregates were filtered (as compared to the SERS sample with glycine as interference marked with a yellow circle) and thus left only a stain on the filter paper.