Supplementary Material

Antenna effect enhanced ECL immunoassay using microfloral europium porphyrin coordination polymers based on Eu³⁺ and TCPP for the detection of chloramphenicol in foods

Xinyue Qian^a, Cheng Tan^a, Jing Zhang^c, Kang Wu^{b,*}, Anping Deng^{a,*}, Jianguo Li^{a,*}

^a The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China

^b School of Biology & Basic Medical Science, Soochow University, Suzhou
215123, P.R. China

° Shanghai Animal Disease Control Center, Shanghai 201103, P.R. China

* Correspondence authors: J.G. Li, Telephone: +86 51265882195, Fax: +86 51265882195, E-mail address: lijgsd@suda.edu.cn; A.P. Deng, Telephone: +86 51265882362, Fax: +86 51265882362, E-mail address: denganping@suda.edu.cn; K. Wu, Phone: +86 51265880178, Fax: +86 51265880178, E-mail address: wukang650202@163.com.

Buffer solution

Phosphate-buffered saline stock solution (PBS, pH = 7.4, 0.1 mol L⁻¹) was prepared by KCl (0.1 mol L⁻¹), NaCl (0.1 mol L⁻¹), Na₂HPO₄ (6.4 mmol L⁻¹) and KH₂PO₄ (1.0 mmol L⁻¹). ECL detection buffer was prepared by PBS containing 0.1 mol L⁻¹ K₂S₂O₈. The solution to activate bare GCE was prepared by 5.0 mmol L⁻¹ K₃[Fe (CN)₆], 5.0 mmol L⁻¹ K₄[Fe (CN)₆] and 0.1 mol L⁻¹ KCl. All aqueous solutions were prepared with sub-boiling doubly distilled water.

Preparation of SnS₂ NSs

 SnS_2 NSs were synthesized with reference to existing methods and with some modifications.¹ Add 0.35 g $SnCl_4 \cdot 5H_2O$ into 30 mL of DI water to form a transparent solution under magnetic stirring, then add 0.4 g thiourea and stir well. Subsequently, the solution was transferred into a 50 mL autoclave and maintained at 180 °C for 24 h. After the reaction, the precipitate was centrifuged and washed three times each with deionized water and ethanol. Eventually, the product was dried under vacuum at 60 °C overnight to obtain a yellow powder for future use.

Characterization of Eu-PCP

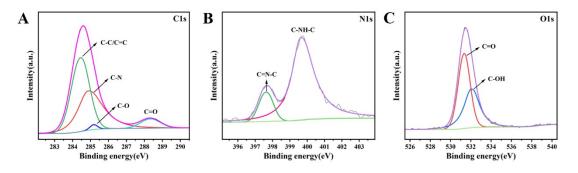
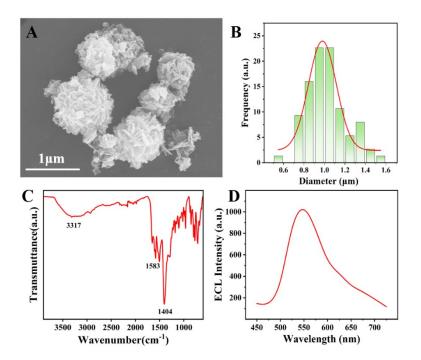
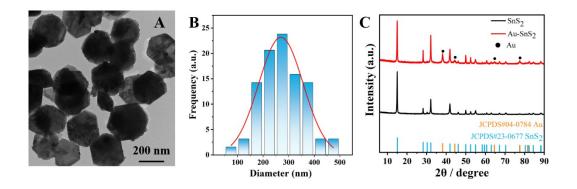




Fig. S1. High-resolution XPS spectra of Eu-PCP (A) C1s, (B) O1s and (C) N1s.

Fig. S2. SEM image of Eu-PCP (**A**). DLS test result for Eu-PCP (**B**). FT-IR spectrum of Eu-PCP (**C**). ECL emission spectrum of Eu-PCP (**D**).

Characterization of Au@SnS₂

Fig. S3. TEM image of SnS₂ NSs (**A**). DLS test result for SnS₂ NSs (**B**). XRD pattern of Au@SnS₂ NSs (**C**).

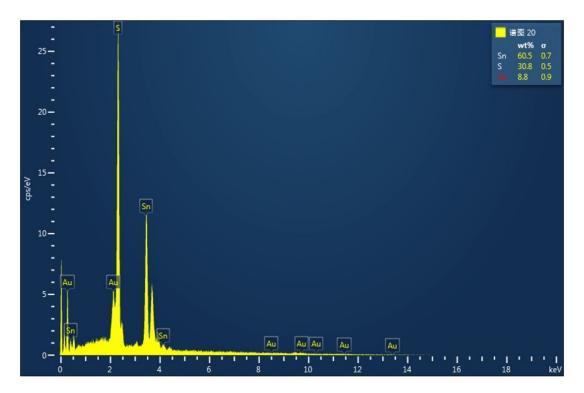


Fig. S4. EDS spectrum of Au@SnS₂ NSs.

Characterization of Zn-PCP, Cu-PCP, Fe-PCP

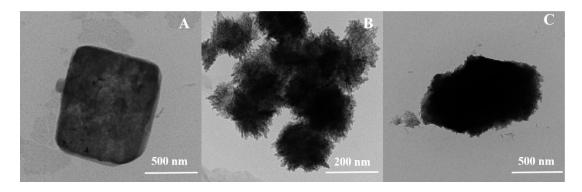


Fig. S5. TEM image of Zn-PCP (A), Cu-PCP (B), Fe-PCP (C).

Molecular structural formulae

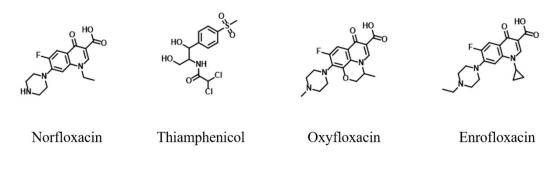


Fig. S6. Molecular structural formulae of Norfloxacin, Thiamphenicol, Ofloxacin and Enrofloxacin

Reproducibility of five immunosensors

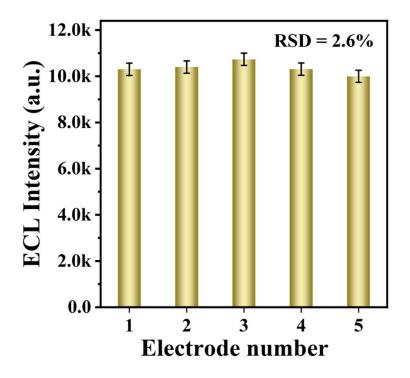


Fig. S7. Reproducibility of five immunosensors under the same conditions at a detector concentration of 0.01 ng mL⁻¹.

Table S1

Methods	LODs	Analytical ranges	References
HPLC-MS/MS	15.5 pg mL ⁻¹	0.01 - 5 ng mL ⁻¹	2
SERS	0.87 pg mL ⁻¹	0.01 - 1000 ng mL ⁻¹	3
ELISA	0.1 ng mL ⁻¹	0.18 - 6.37 ng mL ⁻¹	4
LFIA	3 ng mL ⁻¹	0.1 - 1.5 ng mL ⁻¹	5
ECLIA	3.1 pg mL ⁻¹	0.01 - 100 ng mL ⁻¹	6
ECLIA	0.09 pg mL ⁻¹	0.0002 - 500 ng mL ⁻¹	This work

Table S1 Properties of comparable methods for the determination of CAP

References

- M. Zhou, Y. Pu, Q. Wu, P. Wang, T. Liu and M. Zhang, Sensor. Actuat. B-Chem., 2020, 319, 128298.
- 2. H. Ye, S. Li, Y. Xi, Y. Shi, X. Shang and D. Huang, Antibiotics, 2022, 11, 1427.
- J. Chen, H. Lin, L. Cao, J. Sui, L. Wang, X. Fang and K. Wang, *Spectrochim. Acta.* A, 2023, 303, 123211.
- N. Liu, S. Song, L. Lu, D. Nie, Z. Han, X. Yang, Z. Zhao, A. Wu and X. Zheng, Food Agric. Immunol., 2014, 25, 523–534.
- Q. Han, L. Fan, X. Liu, Y. Tang, P. Wang, Z. Shu, W. Zhang and L. Zhu, *Molecules*, 2023, 28, 7496.
- 6. P. Li, J. Yu, K. Zhao, A. Deng and J. Li, Biosens. Bioelectron., 2020, 147, 111790.