Supplementary File

Water recyclable and reusable fluorescent sensor for nerve gas mimic detection

Ashima Thakur[#], Preeti AshokKumar Chaudhran[#], and Abha Sharma*

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli, Transit campus Lucknow, Uttar Pradesh, India *Email: abha.sharma@niperraebareli.edu.in

Table of Contents

Figure S1 ¹ H NMR spectrum of IMPC at 500 MHz in CDCl ₃
Figure S2 ¹³ C NMR spectrum of IMPC at 125 MHz in CDCl ₃
Figure S3 HRMS Data of IMPC
Figure S4 ¹ H NMR spectrum of IMPC-OH at 500 MHz in DMSO- <i>d</i> ₆
Figure S5 ¹³ C NMR spectrum of IMPC-OH at 125 MHz in DMSO- d_6
Figure S6 HRMS Data of IMPC-OH
Table S1 Solvent-dependent photophysical properties of IMPC and IMPC-OH
Figure S7 (A) UV-Vis. absorption of IMPC (20 μ M) (B) UV-Vis. absorption of IMPC-OH (20 μ M).7
Figure S8 Photostability of (A) IMPC and (B) IMPC-OH7
Figure S9 (A) UV-vis. Spectrum of IMPC (10 μ M) ($\lambda_{ex} = 348$ nm, exc. slit width = 5, em. slit width = 5 and 560 V) and (B) UV-Vis. of IMPC-OH (20 μ M) ($\lambda_{ex} = 348$ nm, exc. slit width = 10, em. slit width = 10 and 500 V) against various types of OPs compounds (10 μ M) in CHCl3 and their visual changes under hand-held UV lamp at wavelength 254 nm for IMPC, MAI, DMMP, PHO, FN, DCNP, CP, LIN, AZA left hand side images and IMPC-OH followed by same sequence of OP compounds (right hand side images)
Figure S10 (A) UV spectra of IMPC (10 μ M) (B) IMPC-OH (20 μ M) with different interfere- ing analytes ($\lambda_{ex} = 348$ nm, exc. slit width = 10, em. slit width= 10 and 500 V) and their photographs under a UV lamp at 254 nm
Figure S11 (A) UV-Vis. of IMPC (10 μM) (B) IMPC-OH with increasing concentration of DCNP Inset: Visible color image of IMPC-OH in absence and presence of DCNP under UV lamp at 254 nm.
Figure S12 Partial ¹ H NMR of (A) IMPC (B) IMPC with DCNP just after addition (C) IMPC9
with DCNP after 1hr at 500 MHz in CDCl ₃ 9
9
Figure S13 ¹³ C NMR of (A) IMPC (B) IMPC with DCNP just after addition (C) IMPC9

with DCNP after 1hr
Figure S14 Partial ¹ H NMR of (A) IMPC-OH (B) IMPC-OH with DCNP just after addition (C) IMPC-OH with DCNP after 1hr at 500 MHz in CDCl ₃
Figure S15 Partial ¹³ C NMR of (A) IMPC-OH (B) IMPC-OH + DCNP (just after addition) (C) After 1 hr. at 125 MHz in CDCl ₃
Figure S16 IR spectrum of (A) IMPC alone and (B) IMPC with DCNP11
Figure S17 IR spectrum of (A) IMPC-OH alone and (B) IMPC-OH with DCNP (C) DCNP only1
Figure S18 (A) TLC analysis of IMPC (left) and IMPC-OH (right) where probe only, probe with DCNP followed by Co are spotted from left to right. (B) Fluorecence spectrum of IMPC in solvent EtOH and ACN, after addition of DCNP and upon dilution with water, (C) Visualization of the EtOH systems, (D) Visualization of the ACN systems at 365 nm
Figure S19 HPLC data of (A) IMPC and IMPC with DCNP, (B) IMPC-OH and IMPC-OH with DCNP HPLC Analysis

Characterization data of probes

Figure S1. ¹H NMR spectrum of IMPC at 500 MHz in CDCl₃

Figure S2. ¹³C NMR spectrum of IMPC at 125 MHz in CDCl₃

Figure S3. HRMS Data of IMPC

Figure S4. ¹H NMR spectrum of IMPC-OH at 500 MHz in DMSO-d₆

S6. HRMS Data of IMPC-OH

 Table S1. Summary of previously reported fluoroscent probes for the detection of OPs.

Sr. No.	Analyte s detectio n	Sensor type	Detection limit	Detect ion state	Response type	Recy clable	Test kit method	Reference
1	DCNP	Imidazo[1, 2- a]pyridine based probe	IMPC 0.1 μM IMPC- OH 0.13 μM	Liqui d	Change in color	Yes	Yes	Present Manuscrip t
	DCP	Imidazo[1, 2- a]pyridine based probe	IMPC 1.58 nM IMPC- OH 0.62 nM	Liqui d	<mark>Change</mark> in color	Yes	<mark>Yes</mark>	<mark>Present</mark> Manuscrip t
2	DCNP, DCP	Triaryl methane dye	2.1 mM - 3.2 mM	Liquid	Change in color (naked eye)	No	No	<i>Tetrahedro</i> <i>n</i> 2012, 68, 8612-8616
4	DCNP	B-Sal- Oxime based	92.2 μM	Liquid	-	No	No	Chem. Commun., 2014, 50, 7531-7534.
5	DCNP, DCP	BODIPY	2.45 μM and 2.21 μM	Liquid	Change in color	No	Yes	Org. Biomol. Chem. 2014, 12, 8745–8751
6	DCNP	polymeric based probe	1 mM	Liquid	Naked eye	No	Yes	Macromole cules., 2016, 7, 2568-2574.
7	DCNP, DMMP, DCP	Zn(II) bisterpyridi ne	0.1 μΜ	Liquid	-	No	Yes	<i>Chem.</i> <i>Commun.</i> 2012, 48, 964–966
8	DCNP, DCP	Fluorescei n- hydroxama te aldehyde based probe	3 mM	Liquid	Change in color (naked eye)	No	Yes	<i>RSC Adv.</i> , 2014, 4, 24645- 24648.
9	DCNP	N,N- dimethylan iline and pyridine containing dye	0.9 mM	Liquid	Change in color (naked eye)	No	Yes	<i>Chem. Eur.</i> <i>J.</i> 2011, 17, 6931 – 6934
10	DCP	Rhodium(I I,II) Paddlewhe	0.113 μM	Liquid	Change in color (naked eye)	No	No	Sens.,2024, 2325-2333.

		el Complexes						
11		Pyrene	0.1 mM	Liquid	Turn-on	No	Yes	Macromole
	DCNP	derived			fluroscemce			cules.,
	DCINI	polymeric						2017, 17,
		probe						6888-6895.
12		rhodamine-	<mark>9.66 nM</mark>	Liquid	<mark>colorimetric</mark>	<mark>No</mark>	Yes	Dyes and
		<mark>deoxylactu</mark>		<mark>&</mark>	and			Pigments,
		<mark>m-based</mark>		Gaseo	<mark>fluorimetric</mark>			<mark>2019, 171,</mark>
		sensor		us and a second se	sensor			<mark>107712.</mark>
13		Bis-indolyl	10.8 µM	Liquid	Change in	No	Yes	Analyst,
+		based	IMPC		color (naked	IN		2018, 143,
#		probes			eye)			528-535.

 Table S2 Solvent-dependent photophysical properties of IMPC and IMPC-OH

					N OH N OH			
Solvents	Absorb	Emissio	Stokes	Molar	Absorb	Emissio	Stokes	Molar
	ance	n 2	Shift (A v	Extension	ance	n 2	Shift (A v	Extension
	∧abs, max	∧ _{em,max}		coefficient	∧abs, max	∧ _{em,max}		coefficient
	(nm)	(nm)	cm ⁻¹)	(E (M ⁻	(nm)	(nm)	cm ⁻¹)	(E, M ⁻¹ cm ⁻
				¹ cm ⁻¹)				1)
DMSO	358	514	8477	18000	349	535	9891	9900
DMF	348	504	8894	21000	348	514	10013	9300
CHCl ₃	348	461	7043	22000	348	480	7902	11400
ACN	346	495	8699	27000	347	525	9734	11500
EtOH	355	498	8088	21000	336	446	4509	10900
THF	357	486	6958	25000	341	402	9365	11700
TOU	358	472	6746	20700	345	491	8281	11100
Water	353	427	7538	13000	336	393	-	10000

Figure S8. Photostability of (A) IMPC and (B) IMPC-OH

Figure S9. (A) UV-vis. Spectrum of **IMPC** (10 μ M) ($\lambda_{ex} = 348$ nm, exc. slit width = 5, em. slit width = 5 and 560 V) and (B) UV-Vis. of **IMPC-OH** (20 μ M) ($\lambda_{ex} = 348$ nm, exc. slit width = 10, em. slit width = 10 and 500 V) against various types of OPs compounds (10 μ M) in CHCl3 and their visual changes under hand-held UV lamp at wavelength 254 nm for **IMPC**, MAl, DMMP, PHO, FN, DCNP, CP, LIN, AZA left hand side images and **IMPC-OH** followed by same sequence of OP compounds (right hand side images).

Quantum Yield Measurements

To calculate the quantum yield, a single point method was used with quinine sulphate as a reference having quantum yield of 0.54 at 360 nm. The following equation was used to calculate the quantum yield:

$$\Phi_{\rm S} = \Phi_{\rm R} \mathbf{x} \left(\frac{I_{\rm S}}{I_{\rm R}} \right) \quad \mathbf{x} \quad \left(\frac{\mathbf{1} \cdot \mathbf{10}^{-A}}{\mathbf{1} \cdot \mathbf{10}^{-A}} \right) \quad \mathbf{x} \quad \left(\frac{\eta_{\rm S}}{\eta_{\rm R}} \right)^2$$

where, Φ_S refers to quantum yield of sample, Φ_R refers to quantum yield of reference, $I_S \& I_R$ being the measured integrated emission intensity (area under the curve), $A_R \& A_S$ refers to the absorbance of reference & sample, η_S and η_R is the refractive index for sample and reference. In order to minimize the re-absorption effects, absorbance intensity was kept below 0.1 at the excitation wavelength in the 10 mm fluorescence cuvette. An excitation and emission slit width of 5 nm at 600 V was used.

Figure S10. (A) UV spectra of **IMPC** (10 μ M) (B) **IMPC-OH** (20 μ M) with different interfereing analytes ($\lambda_{ex} = 348$ nm, exc. slit width = 10, em. slit width= 10 and 500 V) and their photographs under a UV lamp at 254 nm.

Figure S11. (A) UV-Vis. of **IMPC** (10 μ M) (B) **IMPC-OH** with increasing concentration of DCNP Inset: Visible color image of **IMPC-OH** in absence and presence of DCNP under UV lamp at 254 nm.

Figure S12. Partial 1H NMR of (A) **IMPC** (B) **IMPC** with DCNP just after addition (C) **IMPC** with DCNP after 1hr at 500 MHz in CDC13.

Figure S13. ¹³C NMR of (A) **IMPC** (B) **IMPC** with DCNP just after addition (C) **IMPC** with DCNP after 1hr.

Figure S14. Partial 1H NMR of (A) **IMPC-OH** (B) **IMPC-OH** with DCNP just after addition (C) **IMPC-OH** with DCNP after 1hr at 500 MHz in CDCl3.

Figure S15. Partial ¹³C NMR of (A) **IMPC-OH** (B) **IMPC-OH** + DCNP (just after addition) (C) After 1 hr. at 125 MHz in CDCl₃.

Figure S16. IR spectrum of (A) IMPC alone and (B) IMPC with DCNP.

Figure S17. IR spectrum of (A) **IMPC-OH** alone and (B) **IMPC-OH** with DCNP (C) DCNP only.

Figure S18. (A) TLC analysis of **IMPC** (left) and **IMPC-OH** (right) where probe only, probe with DCNP followed by Co are spotted from left to right (B) Fluorecence spectrum of **IMPC** in solvent EtOH and ACN, after addition of DCNP and upon dilution with water (C) Visualization of the EtOH systems (D) Visualization of the ACN systems at 365 nm.

Figure S19. HPLC data of (A) **IMPC** and **IMPC** with DCNP, (B) **IMPC-OH** and **IMPC-OH** with DCNP HPLC Analysis.

High-performance liquid chromatography (HPLC) analysis was performed to prove the regeneration mechanism of both probes, which was executed on Agilent HPLC with a Eclipse Plus C18 reverse-phase column (4.6 mm x 250 mm, 5 μ M, S.No.USUXA31525) at room temperature.

Time (min.)	A (0.1% Formic acid in water)	B (Acetonitrile)
2.00	90	10
20.00	10	90
20.50	10	90
23.90	10	90
24.00	90	10
27.00	90	10

Mobile phase: A (Formic acid in water (0.1%)): B (ACN)

Flow rate: 1 mL/min

Detector: UV/Vis. detector.

Data acquired were processed using Open Lab CDS Chemstation Analysis data system.