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Feature Extractor (PCA-LDA)
Feature extraction is critical for improving the performance of most learning algorithms. 

Extracting different features not only reduces the complexity of the subsequent model training but 
also improves the accuracy of the subsequent classification and prediction as well as the efficiency 
of the machine learning models1, 2. Linear discriminant analysis (LDA) is a well-known method for 
dimension reduction 3. The goal of LDA is to maximize the between-class scatter matrix measure 

 while minimizing the within-class scatter matrix measure . In other words, the LDA (𝑆𝑏) (𝑆𝑊)

method not only magnifies the differences between different categories but also reduces the 
differences within the same category. Such an approach could make it easier for machine-learning 
models to identify category differences. However, the number of acquired spectra is often smaller 
than the vector dimension representing them.  is always singular, rendering the LDA model 𝑆𝑊

unusable.4. To improve the singularity of the , the number of spectra is greater than the vector 𝑆𝑊
dimension, a dimension reduction method can be linked with LDA methods 5. PCA is also a 
dimension reduction method for dimensionality reduction and yields projection directions that 
maximize the total scatter across all classes. The PCA method extracts the main features of the 
spectra and makes the within-class scatter matrix nonsingular. The PCA-processed data allows the 
LDA method to directly project from a high dimension to a low dimension5. If  is nonsingular, 𝑆𝑊

the optimal projection matrix  of LDA method is denoted by: (𝑊𝑜𝑝𝑡)

𝑊𝑜𝑝𝑡= 𝑎𝑟𝑔𝑚𝑎𝑥𝑊
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The optimal projection matrix  obtained by combining the PCA and LDA methods is denoted (𝑊𝑜𝑝𝑡)

by:
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Fig. S1 MALDI-TOF MS spectra of 22 bacterial isolates from different genera (Staphylococcus, Escherichia coli 

(E. coli) and species (Klebsiella pneumoniae (K. pneumoniae), Acinetobacter baumannii (A. baumannii)) (LEFT). 

Average Raman spectra of 22 bacterial isolates (RIGHT).



Fig S2. PCA of MALDI-TOF MS data of S1, S2, S3 and S4 form Staphylococcus visualized in a score plot.



Fig S3. PCA of MALDI-TOF MS data of E1, E2, E3, E4 and E5 form E. coli visualized in a score plot.



Fig S4. PCA of MALDI-TOF MS data of K1, K2, K3, K4, K5 and K6 form K. pneumoniae visualized in a score 

plot.



Fig S5. PCA of MALDI-TOF MS data of A1, A2, A3, A4, A5, A6 and A7 form A. baumannii visualized in a score 

plot.



Fig S6. PCA of Raman spectra data of S1, S2 S3 and S4 form Staphylococcus visualized in a score plot.



Fig S7. PCA of Raman spectra data of E1, E2, E3, E4 and E5 form E. coli visualized in a score plot.



Fig S8. PCA of Raman spectra data of K1, K2, K3, K4, K5 and K6 form K. pneumoniae visualized in a score plot.



Fig S9. PCA of Raman spectra data of A1, A2, A3, A4, A5, A6 and A7 form A. baumannii visualized in a score 

plot.



Fig. S10 The confusion matrix of the ANN model for Staphylococcus bacterial species. a-d The confusion matrix 

of Staphylococcus bacterial subspecies is based on MALDI-TOF MS spectral, Raman spectral, prototypical spectra 

fusion (PSF) and feature-extractor-based fusion (FEBF) dataset, respectively.



Fig. S11 The receiver operating characteristic curves (ROC) analysis of the ANN model for Staphylococcus 

bacterial species. a-d The ROC of Staphylococcus bacterial subspecies is based on MALDI-TOF MS spectral, 

Raman spectral, PSF and FEBF dataset, respectively.



Fig. S12 The confusion matrix of the ANN model for E. coli bacterial species. a-d The confusion matrix of E. 

coli bacterial subspecies is based on MALDI-TOF MS spectral, Raman spectral, PSF and FEBF dataset, respectively.



Fig. S13 The ROC of the ANN model for E. coli bacterial species. a-d The ROC of E.coli bacterial subspecies is 

based on MALDI-TOF MS spectral, Raman spectral, PSF and FEBF dataset, respectively.



Fig. S14 The confusion matrix of the ANN model for K. pneumoniae bacterial subspecies. a-d The confusion 

matrix of K. pneumoniae bacterial subspecies is based on MALDI-TOF MS spectral, Raman spectral, PSF and FEBF 

dataset, respectively.



Fig. S15 The ROC of the ANN model for K. pneumoniae bacterial subspecies. a-d The ROC of K. pneumoniae 

bacterial subspecies is based on MALDI-TOF MS spectral, Raman spectral, PSF and FEBF dataset, respectively.



Fig. S16 a Ten-fold cross-validation accuracy of four commonly used machine methods applied to different bacteria 

isolates based on FEBF dataset. b Leave-one-out accuracy of four commonly used machine methods applied to 

different bacteria isolates based on FEBF dataset.



Fig. S17 The confusion matrix of all bacterial species based on corresponding prototypical spectra fusion dataset by 

ANN method.



Fig. S18 The ROC of all bacterial species based on corresponding prototypical spectra fusion dataset by ANN 

method.



Fig. S19 SOM plot showing the clusters and clustering relationships of the differential feature data. a, b SOM plots 

of the Staphylococcus and E. coli species isolates. c, d SOM plots of the K. pneumoniae and A. baumannii subspecies 

isolates.



Table S1. The number of MALDI-TOF MS or Raman spectra (n) for each isolate.

Staphylococcus n E. coli n K. pneumoniae n A. baumannii n

S1 69 E1 64 K1 78 A1 80

S2 74 E2 75 K2 82 A2 80

S3 78 E3 80 K3 87 A3 80

S4 72 E4 76 K4 79 A4 80

E5 74 K5 78 A5 80

K6 74 A6 80

A7 80



Table S2. The number of FEBF spectra (n) for each isolate in the training set.

Staphylococcus n E. coli n K. pneumoniae n A. baumannii n

S1 52 E1 48 K1 59 A1 60

S2 56 E2 57 K2 61 A2 60

S3 58 E3 60 K3 66 A3 60

S4 54 E4 57 K4 59 A4 60

E5 55 K5 58 A5 60

K6 56 A6 60

A7 60



Table S3. The number of FEBF spectra (n) for each isolate in the testing set.

Staphylococcus n E. coli n K. pneumoniae n A. baumannii n

S1 17 E1 16 K1 19 A1 20

S2 18 E2 18 K2 21 A2 20

S3 20 E3 20 K3 21 A3 20

S4 18 E4 19 K4 20 A4 20

E5 19 K5 20 A5 20

K6 18 A6 20

A7 20



Table S4. Assignments of the major Raman peaks of four different species.

a str=stretching; def=deformation; sym=symmetric; asym=antisymmetric.

Staphylococcus

(cm-1)

E. coli

(cm-1)

K. pneumoniae

(cm-1)

A. banumannii

(cm-1)
Major peak assignment Ref.

620 620 621 Phenylalanine (skelet al) 6

643 640 644 648 Tyrosine 6

673 670 673 672 T, G(DNA/RNA) 7

724 723 725 adenine 6

746 748 746 744 Adenine (Nucleic acids) 8

778 783 783 781 Cytosine, uracil (ring, str) 6

828 827 820 “exposed” Tyrosine 6

856 854 855 850
CC str, COC 1,4 glycosidic 

link
6

1001 1003 1000 1002 Phenylalanine 9

1080 1078 1077 1070
C–C or C–O str (lipid)

C–C or PO2 str (nucleic acids)
10

1128 1126 1126 1125
Proteins: stretching C-N;

Carbohydrates: str C-O
9

1154 1154 1160
Lipids and nucleic acids

(cytosine, guanine, adenine)
10

1229 1226 1225 1222 C-N and C-C str 6

1245 1238 Amide III (β-Sheet) 11

1337 1339 1337 1336 Proteins: twisting (CH2, CH3) 11

1364 1361 1360
Pyrimidineand imidazole rings 

(Nuleic acids)
8

1444 1449 1447 1445 C-H2 def 6

1619 1620 1617 tyrosine 6

1666 1667 1666 Amide I 6

1732 1732 1732 >C=O ester str 6
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