Supplementary Information

I-motif sensor-based fluorometric detection of Mpox using multiplex-LAMP

Tasnima Alam Asa,^a and Young Jun Seo^{a,*}

^aDepartment of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea

*Tel.: +82-63-270-3417; Fax: +82-63-270-3408; E-mail: <u>tasnima.asa024@gmail.com</u>, & <u>yseo@jbnu.ac.kr</u>

Contents

- 1. Table S1: Oligonucleotides used in this study.
- 2. Supportive data as:
- Figure S1: The Bar diagram represents the confirmation of pH change over different conditions of the LAMP.
- **Figure S2:** Confirming i-motif formation by colorimetric change.
- Figure S3: Temperature-dependent multiplex-LAMP gradient study to show LAMP primers suitability
- Figure S4: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay selectivity study by using nine different bacterial genomes.
- Figure S5: Analysis of amplification plot based on selectivity experiment of Mpox detection by Real-time PCR by using nine different bacterial genomes.
- Figure S6: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay sensitivity study.
- Figure S7: Analysis of sensitivity experiment of Mpox detection by Real-time PCR through 20% non-denaturing PAGE
- **Figure S8:** Analysis of sensitivity experiment of multiplex-LAMP mediated i-motif-TO fluorometric detection system with human serum samples to imitate real sample conditions.
- Figure S9: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay sensitivity study with human serum samples to imitate real sample conditions.

Target gene	LAMP Primers
B6R (204 mers): Envelope protein gene cgttgtgaagaaaaaatggaaatacttcttggaatgatactgttacgtgtcctaatgcggaa tgtcaatctcttcaattagatcacggatcgtgtcaaccagttaaaggaaaatactcatttggg gaacatataactatcaactgtgatgttggatatgaggttattggtgcttcgtacataacttgtac agctaattcttgg	FIP: CGATCCGTGATCTAATTGAAGAGATCTTCTTGGAATGATACTGTTACG BIP: AAGGAAAATACTCATTTGGGGAACACGAAGCACCAATAACCTCAT F3: CGTTGTGAAGAAAAAAATGGAA B3: CCAAGAATTAGCTGTACAAGTT
N3R (231 mers): Complement binding protein gene gtaagtagtcaatacgaggaattagaatattattattcatgtgattatactaacaaccgtcctac aattaaacaacattacttttataacggcgaagaatatactgaaattgatagatcgaaaaaagc cactaataaaaacagttggttaattacttcaggctttagactacaaaaatggttcgatagcga agattgtataatttatctcagatctttagttagaagaatg	FIP: TCAATTTCAGTATATTCTTCGCCGTATTCATGTGATTATACTAACAACCG BIP: AACAGTTGGTTAATTACTTCAGGCTAATTATACAATCTTCGCTATCGA F3: GTAAGTAGTCAATACGAGGAATT B3: CATTCTTCTAACTAAAGATCTGAGA
E9L (205 mers): DNA polymerase gene aaacagtaatcgtttaccacttaaatcgatataacagtaacttgtatgcgagattgggttaata aatacagaaggaaacttcttatcgaagtgacactctatatctagaaataagtacgatcttggg atatcgaatctaggtatttctttagcgaaacagttacgtggatcgtcacaatgataacatccat tgttaatctttgtc	FIP: ACTTCGATAAGAAGTTTCCTTCTGTATCGATATAACAGTAACTTGTATGC BIP: AAGTACGATCTTGGGATATCGAATCTGTGACGATCCACGTAAC F3: AAACAGTAATCGTTTACCACTT B3: GACAAAGATTAACAATGGATGTT
Target gene	RT-qPCR Primers
B6R (92 mers): Envelope protein gene cggatcgtgtcaaccagttaaaggaaaatactcatttggggaacatataactatcaactgtg atgttggatatgaggttattggtgcttcgt	Forward: CGGATCGTGTCAACCAGTTA Reverse: ACGAAGCACCAATAACCTCATA
N3R (116 mers): Complement binding protein gene actaacaaccgtcctacaattaaacaacattactttataacggcgaagaatatactgaaatt gatagatcgaaaaaagccactaataaaaacagttggttaattacttcaggctt	Forward: ACTAACAACCGTCCTACAATTAAAC Reverse: AAGCCTGAAGTAATTAACCAACTG
E9L (141 mers): DNA polymerase gene acttgtatgcgagattgggttaataaatacagaaggaaacttcttatcgaagtgacactctat atctagaaataagtacgatcttgggatatcgaatctaggtatttctttagcgaaacagttacgt ggatcgtcacaatg	Forward: ACTTGTATGCGAGATTGGGTTAATA Reverse: CATTGTGACGATCCACGTAACT
I-motif sequences (red colored one "Rb" mainly used in our detection system)	
 H-telo: TAACCCTAACCCTAACCCTAACCC Rb: CCGCCCAAAACCCCCC HIF-1a : CCCGCCCCTCTCCCA c-MYC: CCCCACCTTCCCCACCCTCCCCC 	

Table S1: Oligonucleotides used in this study.

1. Supportive data:

Figure S1: The Bar diagram represents the confirmation of pH change over different conditions of the LAMP (single, double, and multiplex) reaction. Data was measured from 5 replicates of each reaction; where error bars represent the standard deviations of five replicates.

Figure S2: Confirming i-motif formation by the TO color change, whereas, after post-LAMP amplification, TO was added. Here, Lane 1: Multiplex LAMP without any target (negative control), Lane 2: Single-LAMP, Lane 3: Double-LAMP, Lane 4: Multiplex-LAMP (positive control). In Figure S2, we can clearly see the color difference between the negative and positive controls of multiplex-LAMP (lane 1 & lane 4). Additionally, from left to right (conversion from light yellow to dense yellow), while the color intensity difference is not significantly recognizable, still upon careful observation; even to the naked eye, the slight variations are more apparent.

Figure S3: Temperature-dependent multiplex-LAMP gradient study to show LAMP primers suitability by 20% non-denaturing PAGE. Lane M: 25/100 bp DNA marker, Lane 1: at 65°C negative control, Lane 2: at 65°C positive control, Lane 3: at 60°C positive control, Lane 4: at 55°C positive control, Lane 5: at 60°C negative control, Lane 6: at 55°C negative control.

Figure S4: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay selectivity study by using nine different bacterial genomes; including negative and positive control of our system. All fluorescence emission peaks were measured at 535 nm (Thiazole Orange; TO) wavelength.

Figure S5: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay sensitivity study. A, B, and C represent the three-replication study of sensitivity experiments. All fluorescence emission peaks were measured at 535 nm (Thiazole Orange; TO) wavelength.

Figure S6: Analysis of amplification plot based on selectivity experiment of Mpox detection by Realtime PCR by using nine different bacterial genomes.

Figure S7: Analysis of sensitivity experiment of Mpox detection by Real-time PCR through 20% nondenaturing PAGE; where B6R gene (92 mers), N3R (116 mers), and E9L (141 mers). Here, Lane M: 100 bp DNA marker, Lane 1: 100 pg, Lane 2: 10 pg, Lane 3: 1 pg, Lane 4: 100 fg, Lane 5: 10 fg, Lane 6: 1 fg, Lane 7: 100 ag, Lane 8: negative control (without any target).

Figure S8: Analysis of sensitivity experiment of multiplex-LAMP mediated i-motif-TO fluorometric detection system with human serum samples to imitate real sample conditions by 20% non-denaturing PAGE. Here, Lane M: 25/100 bp DNA marker, Lane 1: 100 ag, Lane 2: 1 fg, Lane 3: 10 fg, Lane 4: 100 fg, Lane 5: 1 pg, Lane 6: 10 pg, Lane 7: 100 pg.

Figure S9: Fluorescence measurement of multiplex-LAMP mediated i-motif-TO fluorometric assay sensitivity study with human serum samples to imitate real sample conditions. A, B, and C represent the three-replication study of sensitivity experiments. All fluorescence emission peaks were measured at 535 nm (Thiazole Orange; TO) wavelength.