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Methods 

Mathematical notations 

The notation largely adheres to the standard conventions used in signal processing. 

The symbols ℝ+
𝑁×𝑀  and ℝ𝑁×𝑀  denote a non-negative real matrix and a real matrix, 

respectively, each with dimensions 𝑁 × 𝑀 . For a matrix 𝑿 ∈ ℝ𝑁×𝑀 , 𝑿𝑛: ∈ ℝ1×𝑀, 𝑿:𝑚 ∈

ℝ𝑁×1, 𝑋𝑛𝑚 ∈ ℝ represent the nth row vector, mth column vector, and (n, m)-element of the 

matrix 𝑿, respectively. The notation 𝑿𝑇 stands for the transpose of matrix 𝑿. The Frobenius 

norm of 𝑿 is indicated by ‖𝑿‖𝐹. The symbols of ‖𝑿𝑛:‖1 and ‖𝑿𝑛:‖2 represent the ℓ1- and 

ℓ2-norm of nth row vector of 𝑿, respectively. For a square matrix of 𝑿, 𝑇𝑟(𝑿) represents its 

trance. 𝟏𝑁, 𝟏𝟏𝑁 and 𝑰𝑁 stand for a N-dimensional all-ones vector, (N, N)-dimensional all-

ones matrix and N-dimensional identity matrix, respectively.  

 

Preparation of the starting matrix 𝑨 representing fragment abundance (FA) (Fig. 2A) 

The ready-to-use spectral dataset of the Gly-Jeff-Silox system is available in the 

previous report.1 The dataset 𝑿 contained 310 spectra (31 samples × 10 temperature bands 

from 300 to 600 oC) with 2537 channels. Therefore, 𝑿 was a matrix with the size of (310, 

2537), which was subjected to the reported NMF algorithm: 𝑿 ≈ 𝑨𝑺 , where 𝑺 ∈ ℝ+
𝑀×𝐷 

represents 27–fragment spectra (Fig. S1) and 𝑨 ∈ ℝ+
10𝑁×𝑀 represents their abundances in 

each sample (Fig. 2A), where N = 31, M = 27 and D = 2537. Note that 𝑨  originally 

represented a spectrum-wise FA with a dimension of (310, 27), which was converted into a 

sample-wise FA with a dimension of (31, 27), which was further converted into weight 

fraction using synchronized thermogravimetry data as previously described.1 The NMF 
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hyperparameter was the same as previous report and presented in Table S1. 

The conventional linear RQMS performs two step NMF: 𝑿 ≈ 𝑨𝑺 ≈ (𝑪𝑩)𝑺 , as 

described in the main text.2 NL-RQMS aims to achieve better compositional analysis for 

interactive/reactive systems by introducing a bilinear model in the second factorization step 

yet starting with the same matrix 𝑨 as in conventional RQMS. The starting matrix 𝑨 with 

size of (N, M) can be found in attached Data S1. 

 

Quick review of linear RQMS 

 The first NMF 𝑿 ≈ 𝑨𝑺 extracts the most representative M–fragment spectra 𝑺 and 

their abundances (FA) in each sample 𝑨. The second NMF 𝑨 ≈ 𝑪𝑩 finds the FA of K–pure 

constituents 𝑩 ∈ ℝ+
𝐾×𝑀  and their concentration in each sample 𝑪 ∈ ℝ+

𝑁×𝐾 . The second 

NMF uses so-called volume minimization algorithm (VolMin),3 which finds the volume-

minimized simplex spanned by the rows of 𝑩 and enclosing all the rows of 𝑨. This can be 

formulated as follows: 

min
 𝑪,𝑩

1

2
‖𝑨 − 𝑪𝑩‖𝐹

2 + 𝑣𝑜𝑙(𝑩) (1) 

𝑠. 𝑡. 𝑩 ≥ 0, 𝑪 ≥ 0, 𝑪𝟏𝐾 = 𝟏𝑁 . 

The first term is of approximation residuals and the second term is of the volume 

regularization of the simplex. However, this cannot output accurate composition because  𝑨𝑛: 

represents the coordinates of nth sample in the non-orthogonal coordinate system spanned by 

𝑺.  To consider this non-orthogonality originating from the first NMF, the approximation 

residuals 𝐷(𝑨|𝑪𝑩) should be evaluated in Riemann metrics, i.e.: 
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𝐷(𝑨|𝑪𝑩) = 𝑇𝑟[(𝑨 − 𝑪𝑩)𝑺𝑺𝑇(𝑨 − 𝑪𝑩)𝑇]. 

The significance of using Riemann metrics is that the distance between 𝑨 and 𝑪𝑩 can be 

evaluated in the original spectral space, as depicted in Fig. 3. Using a lower triangular matrix 

𝑳 ∈ ℝ𝑀×𝑀  obtained via Cholesky decomposition of 𝑺𝑺𝑇 , the residuals can be written as 

follows: 

𝐷(𝑨|𝑪𝑩) = 𝑇𝑟[(𝑨 − 𝑪𝑩)𝑳𝑳𝑻(𝑨 − 𝑪𝑩)𝑇] = ‖�̂� − 𝑪�̂�‖
𝐹

2
, 

where �̂� = 𝑨𝑳 ∈ ℝ𝑁×𝑀  and  �̂� = 𝑩𝑳 ∈ ℝ𝐾×𝑀 . The equation (1) then becomes as follows 

with additional orthogonal constraints: 

min
 𝑪,�̂�⬚

1

2
‖�̂� − 𝑪�̂�‖

𝐹

2
+

𝛼

2
𝑣𝑜𝑙(�̂�) +

𝛽

2
𝑛𝑜𝑛𝑜𝑟𝑡ℎ(�̂�) , (2) 

𝑠. 𝑡. �̂� = 𝑩𝑳, 𝑩 ≥ 0, 𝑪 ≥ 0, 𝑪𝟏𝐾 = 𝟏𝑁 , 

where 𝑛𝑜𝑛𝑜𝑟𝑡ℎ(�̂�) is a non-orthogonality term of row vectors of �̂�, and 𝛼 > 0, 1 > 𝛽 > 0 

are regularization parameters controls volume-shrinking and volume-expanding force 

applied to the simplex. Although the selection of hyperparameters influence the final 

compositional results, 0.1 for both  and  were consistently used and gave sufficiently 

accurate results in the previous reports. These regularization terms were formulated as 

follows: 

𝑣𝑜𝑙(�̂�) = log|det(�̂��̂�𝑇 + 𝜏𝑰𝐾)|, 

𝑛𝑜𝑛𝑜𝑟𝑡ℎ(�̂�) = 𝑇𝑟 (𝜦 (�̂��̂�𝑇 − 𝑑𝑖𝑎𝑔(�̂��̂�𝑇))), 

where 𝜦 ∈ ℝ𝐾×𝐾  is a symmetric Lagrange multiplier matrix. The equation (2) cannot be 

solved directly since both 𝑪  and �̂�  are unknown. Therefore, they were alternatively and 
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iteratively updated starting from the initial 𝑪 and �̂� set by vertex component analysis. At the 

tth update, the update to 𝑪(𝑡+1) can be achieved using a simple algorithm of non-negative 

least square (NNLS)4 based on temporal �̂�(𝑡), here denoted as 𝑪(𝑡+1) = 𝑁𝑁𝐿𝑆(�̂�; �̂�(𝑡)). On 

the other hand, updating rule for �̂� is much more complicated due to the regularization terms 

and non-negative restriction; yet it can be updated based on �̂�  and 𝑪(𝑡)  as derived in the 

previous report, and here denotation of   �̂�(𝑡+1) = 𝑣𝑜𝑙𝑚𝑖𝑛(�̂�; 𝑪(𝑡)). 

 

Mathematical derivation of the NL-RQMS 

 For analyzing interactive systems, the nonlinear correction term should be 

incorporated in the second factorization,5 i.e.:  

𝑨 ≈ 𝑪𝑩 + 𝑪′𝑩′, (3) 

where  𝑩′
𝑘: (𝑘 = 1,2, … 𝐾′) represents the kth cross-component of (l, m)-components, 𝐾′ =

(𝐾
2

), and (l, m) is the index combination of two-combination of K. The kth column of  𝑪′ is 

calculated by pairwise multiplication of the columns of 𝑪: 

𝑪′
:𝑘 = 𝑪:𝑙⨀𝑪:𝑚, 𝑓𝑜𝑟 𝑘 = 1, 2, . . 𝐾′, (4) 

where  ⨀ represents element-wise production.  

 As described above, the approximation residual should be evaluated using Riemann 

metrics. The equation (3) becomes �̂� ≈ 𝑪�̂� + 𝑪′𝑩′̂  where �̂� = 𝑨𝑳, �̂� = 𝑩𝑳, 𝑩′̂ = 𝑩′𝑳 . As 

the vertices of pure component spectra are consistent regardless of the existence of 

interactions, the same regularization terms for  �̂�  were applied as (2). The NL-RQMS 

algorithm then can be formulated as follows: 
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min
 𝑪,�̂�,�̂�′

1

2
‖�̂� − 𝑪�̂� − 𝑪′𝑩′̂‖

𝐹

2
+

𝛼

2
𝑣𝑜𝑙(�̂�) +

𝛽

2
𝑛𝑜𝑛𝑜𝑟𝑡ℎ(�̂�) + 𝜌‖𝑩′‖1, (5) 

𝑠. 𝑡. �̂� = 𝑩𝑳, 𝑩′̂ = 𝑩′𝑳, 𝑩 ≥ 0, 𝑪 ≥ 0, 𝑪𝟏𝐾 = 𝟏𝑁 , 

where  𝑪′  can be calculated from 𝑪  according to equation (4). The regularization term of 

𝜌‖𝑩′‖1  express the chemical knowledge that the polymer substructures involved in 

reaction/interaction should be limited, and the hyperparameter 𝜌 controls the nonlinearity of 

the model. Introducing 𝑨′̂ ≡ �̂� − 𝑪′𝑩′̂  makes the problem (5) become very similar to 

problem (2). If 𝑩′̂(𝑡)  is given at tth iteration, �̂�(𝑡+1)  can be updated using exact same 

algorithm:  �̂�(𝑡+1) = 𝑣𝑜𝑙𝑚𝑖𝑛(𝑨′̂
(𝑡)

; 𝑪(𝑡)) . However, the update rule of 𝑪(𝑡+1)  should be 

modified from the simple NNLS, because this update affects 𝑪′ as well.  

 To consider the update rule for 𝑪, the objective function is defined as follows: 𝐿 ≡

1

2
‖�̂� − 𝑪�̂� − 𝑪′𝑩′̂‖

𝐹

2
=

1

2
‖�̂� − �̃��̃�‖

𝐹

2
 , where  �̃� ≡ ( �̂�

𝑩′̂
)  and �̃� ≡ (𝑪 𝑪′) . From �̃� , only 

columns related to k-components are extracted and denoted as 𝑪𝑘 , i.e. 𝑪𝑘 ≡

(𝑪:𝑘 𝑪:𝑘⨀𝑪:1 𝑪:𝑘⨀𝑪:2 … 𝑪:𝑘⨀𝑪:𝐾)  ∈ ℝ+
𝑁×𝐾 . In the same manner, k-component related 

rows of  �̃� are extracted and denoted as 𝑩𝑘. Using 𝑪𝑘 and 𝑩𝑘, the objective function can be 

written as: 𝐿 =
1

2
‖𝑨𝑘 − 𝑪𝑘𝑩𝑘‖𝐹

2 , where 𝑨𝑘 ≡ �̂� − �̃��̃� + 𝑪𝑘𝑩𝑘. The gradient of 𝐶𝑛𝑘 with to 

objective function is computed as follows: 

𝜕𝐿

𝜕𝐶𝑛𝑘
= 𝑇𝑟 [

𝜕𝑪𝑘

𝜕𝐶𝑛𝑘
(

𝜕𝐿

𝜕𝑪𝑘
)

𝑇

] (6) 

The nth row of 
𝜕𝑪𝑘

𝜕𝐶𝑛𝑘
 can be calculated as (1 𝐶𝑛1 𝐶𝑛2 … 𝐶𝑛𝑘) ≡ 𝒄/𝑘𝑇

 and all the other rows are 

zeros. Therefore, Eq. 6 can be calculated as follows: 
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𝜕𝐿

𝜕𝐶𝑛𝑘
= 𝒄/𝑘𝑇

[𝑩𝑘𝑩𝑘
𝑇𝑪𝑘

𝑇 − 𝑩𝑘𝑨𝑘
𝑇]

:𝑛
 

The optimized 𝐶𝑛𝑘 can be obtained by setting 
𝜕𝐿

𝜕𝐶𝑛𝑘
≡ 0 and calculated as: 

𝐶𝑛𝑘 =
𝒄/𝑘𝑇

𝑩𝑘(𝑨𝑘
𝑇)

:𝑛

𝒄/𝑘𝑇
𝑩𝑘𝑩𝑘

𝑇𝒄/𝑘
(7) 

If 𝐶𝑛𝑘 becomes negative values, then 𝐶𝑛𝑘 is set to zero. 

 Once �̂�(𝑡) and 𝑪(𝑡) are updated, �̂�′ can be immediately updated using generalized 

least absolute shrinkage of selection operators (LASSO) algorithm.6  This problem is 

formulated as follows with temporally fixed �̂�(𝑡) and 𝑪(𝑡): 

min
 𝑩′̂

1

2
‖�̅� − 𝑪′𝑩′̂‖

𝐹

2
+ 𝜌‖𝑩′‖1, (8) 

𝑠. 𝑡. 𝑩′̂ = 𝑩′𝑳 

where �̅� ≡ �̂� − 𝑪�̂�. The NL-RQMS cyclically updating �̂�, 𝑪 and �̂�′ is outlined as follows. 

Algorithm 1: Pseudo-code for NL-RQMS 

Input: sample-wise FA: 𝑨 ∈ ℝ+
𝑁×𝑀 , fragment spectra: 𝑺 ∈ ℝ+

𝑀×𝐷, the number of system 

constituents: K, regularization parameters: (𝛼, 𝛽, 𝜌) 

Output: fraction: 𝑪 ∈ ℝ+
𝑁×𝐾 , FAs of the constituents: 𝑩 ∈ ℝ+

𝐾×𝑀 , FAs of cross-

component: 𝑩′ ∈ ℝ+
𝐾′×𝑀  

Initialization 

calculate 𝑳 via Cholesky decomposition of 𝑺𝑺𝑇 

set �̂� = 𝑨𝑳 

initialize �̂� and  𝑪 using linear RQMS algorithm. 
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Repeat until convergence criteria is satisfied: 

  Calculate �̅� = �̂� − 𝑪�̂�. 

Calculate 𝑪′ following Eq. 4. 

  update 𝑩′̂ by solving Eq. 8 using generalized LASSO. 

  Calculate 𝑨′̂ = �̂� − 𝑪′𝑩′̂. 

  Update  �̂� = 𝑣𝑜𝑙𝑚𝑖𝑛(𝑨′̂;  𝑪) 

  Update 𝑪 by Eq. 7. 

  Normalize 𝑪 so that sum-to-one constraint is satisfied. 

return 𝑪, 𝑩 and 𝑩′ 
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Supplementary Figures and Tables 

 

Fig. S1. The extracted 27–fragment spectra (𝑺) from the spectral dataset 𝑿 containing 310 

spectra (31 samples × 10 temperature bands). The fragment abundances (FAs) of these 27 

spectra in each sample is numerically presented in Table S1 and depicted as a heatmap in Fig. 

2A. 
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Fig. S2. (NL-)RQMS flowchart and definition of terminologies. Channels: m/z positions of 

centroid peaks; fragment spectra: groups of peaks whose intensities fluctuates at a certain 

ratio across the entire spectral dataset; fragment abundance (FA): the abundances of the 

fragment spectra in each sample; reference: a pure system component; cross-component: the 

interaction effects caused by mixing two references, influencing the FAs in mixed samples. 

The incorporation of thermogravimetry data for converting FA to a weight basis is detailed 

in the previous report.1 
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Fig. S3. Estimating the nonlinearity effect on fragment abundance (FA). Red points 

represent the measured FA for each sample, while the yellow triangular plane is the best-fit 

plane that these red points align with. Green points mark where perpendicular lines from red 

dots intersect with the plane. Nonlinearity is evaluated by the deviation from the plane. (A) 

FA of a non-interacting fragment derived from Silox, where the plane slopes towards the 

Silox vertex, indicating that most sample FAs are close to the best-fit plane. (B) FA of 

fragment 19, which results from Gly-Jeff interactions, shows that most points deviate from 

the plane. Since the true Gly, Jeff, and Silox samples contain almost no fragment 19 (Fig. 

2A), the actual plane should be near FA = 0 plane. This suggests that using a linear analysis 

to estimate the plane for such nonlinear data leads to significant errors. The weight fraction 

of fragments caused by nonlinear interactions in this dataset is calculated by dividing the 

total distance of data points from the plane by the number of samples, showing that 41% of 

the total weight is influenced by nonlinear effects. 
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Fig. S4. Testing Robustness Against Noise in Input Data. The sample variance for each 

fragment in the input FA matrix data was calculated, and Gaussian noise, with a variance 

between 1% and 30% of the sample variance, was randomly added to the input data. Noise 

was introduced ten times for each noise level, and the error from the true composition was 

measured as the RMSE of the estimated composition values. The average RMSE was plotted 

against the noise levels, with error bars showing the standard deviation across the ten trials. 

The results indicate that estimation accuracy remains stable up to noise levels of around 10%, 

demonstrating the robustness of NL-RQMS in handling noise. 
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Fig. S5. Characterization of important fragment spectra identified as having positive or 

negative nonlinear effects by NL-RQMS analysis. The observed and calculated masses were 

highly consistent. 
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Table S1. 

The hyper parameters of the first NMF 𝑿 ≈ 𝑨𝑺 and the second factorization 𝑨 ≈ 𝑪𝑩 + 𝑪′𝑩′. 

Dataset Sample 

number 

N 

First NMF to calculate FA Second factorization 

𝑤𝑜 Merging 

threshold 

Initial M iteration 𝐾 𝛼
= 𝛽 

p  

Gly/Jeff/Silox 31 0.2 0.99 30 3000 3 0.1 1.5 0.03 

wo: This parameter defines the strictness of orthogonality. A higher wo value indicates fewer 

shared peaks among the fragment spectra. The value of wo should range between 0 and 1, 

where 0 implies no orthogonality constraint and 1 represents the strictest constraint. 

Merging threshold and initial M: These parameters are associated with the automatic 

relevance determination (ARD) mechanism. The initial number of bases should be set larger 

than the appropriate number, and the ARD mechanism reduces the number of basis spectra 

by merging them when the cosine similarity of spectra exceeds the "merging threshold." 

K: The number of system constituents. 

: The regularization hyperparameter that controls the minimum volume constraint for the 

simplex spanned by the reference spectra. A higher  value results in a more contracted 

simplex. 

: The regularization hyperparameter that controls the orthogonality among the reference 

spectra. A higher  value leads to a more expanded simplex. 

p: The hyperparameter that controls robustness against outliers, which should be specified 

between 0.5 and 2. A higher p makes the second factorization more sensitive to data variation 

but less robust to outliers. 

: This parameter controls the sparseness of the interaction term of 𝑩′. 
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Table S2. 

  Known composition Inferred composition (linear) Inferred composition (nonlinear) 

FileNames Gly Jeff Silox Gly Jeff Silox Gly Jeff Silox 

gly10jeff10silox80 0.15 0.05 0.80 0.11 0.01 0.89 0.13 0.06 0.81 

gly10jeff80silox10 0.05 0.80 0.15 0.00 0.79 0.21 0.07 0.75 0.18 

gly10jeff80silox10 0.15 0.80 0.05 0.09 0.83 0.07 0.15 0.75 0.10 

gly20jeff40silox40 0.21 0.39 0.40 0.20 0.37 0.43 0.25 0.38 0.38 

gly20jeff80 0.20 0.80 0.00 0.15 0.85 0.00 0.21 0.79 0.00 

gly20silox80 0.20 0.00 0.80 0.17 0.00 0.83 0.19 0.00 0.81 

gly30jeff70 0.29 0.71 0.00 0.23 0.77 0.00 0.29 0.71 0.00 

gly30silox70 0.32 0.00 0.68 0.23 0.00 0.77 0.27 0.00 0.73 

gly33jeff33silox33 0.33 0.33 0.34 0.29 0.32 0.38 0.34 0.31 0.34 

gly40jeff20silox40 0.40 0.20 0.41 0.35 0.20 0.45 0.40 0.20 0.39 

gly40jeff40silox20 0.40 0.40 0.20 0.37 0.43 0.20 0.41 0.38 0.20 

gly40jeff60 0.40 0.60 0.00 0.29 0.71 0.00 0.38 0.62 0.00 

gly40silox60 0.41 0.00 0.59 0.36 0.00 0.64 0.42 0.00 0.58 

gly50jeff50 0.51 0.49 0.00 0.39 0.61 0.00 0.51 0.49 0.00 

gly50silox50 0.50 0.00 0.51 0.45 0.00 0.55 0.52 0.00 0.48 

gly50silox50 0.52 0.00 0.48 0.44 0.00 0.56 0.52 0.00 0.48 

gly60jeff40 0.60 0.40 0.00 0.43 0.57 0.00 0.58 0.42 0.00 

gly60silox40 0.60 0.00 0.40 0.55 0.00 0.45 0.62 0.00 0.38 

gly70jeff30 0.68 0.32 0.00 0.49 0.51 0.00 0.62 0.38 0.00 

gly70silox30 0.70 0.00 0.30 0.69 0.00 0.31 0.75 0.00 0.25 

gly80jeff10silox10 0.81 0.04 0.14 0.88 0.01 0.11 0.86 0.03 0.11 

gly80jeff10silox10 0.78 0.16 0.07 0.80 0.20 0.00 0.83 0.14 0.03 

gly80jeff20 0.79 0.21 0.00 0.62 0.38 0.00 0.74 0.26 0.00 

gly80jeff20 0.80 0.20 0.00 0.70 0.30 0.00 0.71 0.28 0.02 

gly80silox20 0.80 0.00 0.20 0.83 0.00 0.17 0.87 0.00 0.13 

jeff20silox80 0.00 0.21 0.79 0.00 0.15 0.85 0.00 0.23 0.77 

jeff30silox70 0.00 0.29 0.71 0.00 0.24 0.76 0.00 0.33 0.67 

jeff40silox60 0.00 0.39 0.61 0.00 0.35 0.65 0.00 0.45 0.55 

jeff50silox50 0.00 0.51 0.49 0.00 0.49 0.51 0.00 0.58 0.42 

jeff60silox40 0.00 0.61 0.39 0.00 0.57 0.43 0.00 0.66 0.34 

jeff70silox30 0.00 0.71 0.30 0.00 0.66 0.34 0.00 0.74 0.26 

The precisions of linear and nonlinear RQMS were assessed by calculating the root mean 

squared error (RMSE) of 𝑪  in comparison to the ground truth �̅� , i.e., 𝑅𝑀𝑆𝐸 =

√
1

𝑁
∑ ∑ (𝑪 − �̅�)𝑘𝑛

2𝑁
𝑛

𝐾
𝑘 , where N is the dataset seize (N=31) and K is the number of the system 

component (K = 3).  Data points on the Gly-Jeff edge are bolded to highlight the significant 
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improvement in estimation accuracy achieved by updating to nonlinear RQMS. 

 

Data S1. 

Numerical data of Fig. 2A. The values represent the 27–fragment abundances (weight 

fraction) in each sample, derived by reported algorithm using hyperparameters of Table S1. 
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