Supplementary information for

A sulphide resistant Ag|AgCl reference electrode for long-term monitoring

David S. Macedo^{a,b,*}, Mikko Vepsäläinen^{c,*}, Theo Rodopoulos^a, Stephen Peacock^a, Conor F. Hogan^b

^aMineral Resources, CSIRO, Melbourne, Victoria 3168, Australia.

^bDepartment of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria 3086, Australia.

°Technical Research Centre of Finland, VTT, Espoo, Finland.

*Email: david.macedo@csiro.au, mikko.vepsalainen@vtt.fi

S1: BS-SEM images of cross-sections of a) Ag|AgCl wire, and b) unconditioned KCl/AgCl polymer composite.

S2: Bode plot with magnitude of impedance for KCI SSRE and KCI/AgCI SSRE replicate electrodes.

S3: Cyclic voltammograms with 5 mM [Ru(NH₃)₆]Cl₃ and 0.2 M KCl supporting electrolyte using a 1 mm diameter GC electrode and liquid filled reference electrode.

S4: Cyclic voltammograms with 5 mM $[Ru(NH_3)_6]CI_3$ and 0.2 M KCI supporting electrolyte using a 1 mm diameter GC electrode and KCI SSRE.

S5: Cyclic voltammograms with 5 mM [Ru(NH₃)₆]Cl₃ and 0.2 M KCl supporting electrolyte using a 1 mm diameter GC electrode and KCl/AgCl SSRE.

S6: Individual OCP traces for KCI SSREs in 1g/L Na₂S solution. The red dashed reference line is 5 mV under the -47 mV literature value and was used for assessing stabilisation and failure time.

S7: Individual OCP traces for KCI/AgCI SSREs in 1g/L Na₂S solution. The red dashed reference line is 5 mV under the -47 mV literature value and was used for assessing stabilisation and failure time.