Supporting Information

Mechanically Stabilized UiO-66-NH₂/MB Screen Printed Carbon Electrode for High Performance Electrochemical Ratiometric of Quantification miR-21-5p

Jianjing Shen^a, Li Yan^a, Jun Pang^b, Zhenyu Chu^b, Ying Xie^a, Shan Huang^{a,*}, Xiaojun Chen^{a,*}

^a College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.

^b College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. E-mail: huangshan@njtech.edu.cn; chenxj@njtech.edu.cn

Content

Experimental section	1-3
Figure S1	4
Figure S2	5
Figure S3	6
Figure S4	7
Figure S5	8

Materials and reagent. DNA Marker (25-500 bp), 4SGelblue, Acryl/Bis 40% Solution (37.5:1), 50X TBE Buffer, 5X TBE Buffer, 6X DNA Loading Dye, TBE buffer, TAE buffer, Premixed Powder (1X), 1,2-bis(dimethylamino)-ethane (TEMED) and all DNA sequences were synthesized and purified by Sangon Biotechnology Co., Ltd. (Shanghai, China). The chloroauric acid (HAuCl₄·4H₂O) was obtained from Beijing Huawei Ruike Chemical Co., Ltd. (Beijing, China), Sodium phosphate dibasic dodecahydrate (Na₂HPO₄·12H₂O) and sodium phosphate monobasic dihydrate (NaH₂PO₄·2H₂O) were obtained from Xilong Chemical Industry Co., Ltd. (Shanghai, China). Benzoic acid $(C_7H_6O_2)$ was purchased from Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China). Zirconium tetrachloride (ZnCl₄) was bought from Yi En Chemical Technology Co., Ltd. (Shanghai, China). N, N-dimethylformamide (C₃H₇NO) was gotten from Sinopharm Chemical Reagent Co., Ltd. (China). 2-amino-terephthalic acid (C₈H₇NO₄) was acquired from Anhui Zesheng Technology Co., Ltd. (Anhui, China). Methylene blue (C₁₆H₁₈ClN₃S·3H₂O) was supported by Tianjin Institute of Chemical Reagents. (Tianjin, China). Methyl alcohol (CH₄O) was ordered from Wuxi Yasheng Chemical Co., Ltd. (Wuxi, China). 6-mercapto-1-hexanol (MCH) was bought from TCI Chemical Industry Development Co., Ltd. (Shanghai, China).

Apparatus. The data of XRD was acquired by a Zelss Sigma300 (German) diffractometer. The polyacrylamide gel electrophoresis (PAGE) and agarose gel electrophoresis (AGE) were imaged with a BIO-RAD ChemiDoc XRs (Tanon, China). The electrode surface conductivity and electrochemical signal were determined on CHI660D (Chen-Hua, China). Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet iS5 spectrophotometer using the KBr pellet technique. UV-vis spectra were performed on a LAMBDA950 spectrophotometer (PerkinElmer, USA). Scanning electron microscopic (SEM) images were obtained from a Zelss Sigma300 scanning electron microscope.

Polyacrylamide gel electrophoresis

12% polyacrylamide gel electrophoresis was employed to verify the feasibility of the signal amplification strategy. Electrophoresis was performed in 1×TBE buffer at 150 V for 45 min. Preparation of samples by mixing 12 μ L reaction product with 3 μ L 6×loading buffer. After staining with 4SGelblue, the gel was imaged using the Tanon Imager (Tanon MINI SPACE 1000).

Electrochemical detection settings

All electrochemical experiments were performed on a CHI660D electrochemical workstation for cyclic voltammetry (CV), electrochemical impedance spectra (EIS), amperometric i-t and differential pulse voltammetry (DPV) detections. Electrochemical experiments were performed on a three electrodes system with a UiO-66-NH₂-MB/SPCE as working electrode, a platinum electrode as the counter electrode, and a saturated calomel reference electrode (SCE) as the reference electrode. The CV used for verification of Au electrode surface modification was scanned at a rate of 100 mV/s from -0.6 V to +0.8 V. The DPV used for characterization of I_{Fc}/I_{MB} signal was scanned from -0.4 V to 0.4 V. Error bars showed the standard deviation of three individual tests.

Optimization of the ratio of H_1 : miR-21-5p (T), H_1 : miR-21-5p (T): H_2 and H_1 : miR-21-5p (T): H_2 : H_3

CHA, the simplification strategy of this research, plays an important role in the performance of the constructed biosensor. To improve the sensitivity of the electrode, the concentration of DNA and miR-21-5p was optimized in this study. In which, H₁: T=5:1, 2:1, 1:1, 1:2, 1:5, H₁+T:H₂=2:1, 1:1,1:2, 1:3, H₁+T+H₂:H₃=2:1, 1:1, 1:1.5, 1:2, 1:3 respectively. The reaction was carried out at 37 °C for 2 h, and then terminated in a refrigerator at 4 °C for 1 h.

Fabrication the electrode for miR-21-5p detection

In order to explore the construction of UiO-66-NH₂-MB/AuNPs/MCH/H₁/SPCE and its detection ability of miR-21-5p, CV curves of $[Fe(CN)_6]^{3-/4-}$ was used to study the characteristics of the modified electrode.

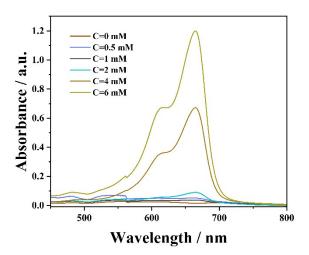
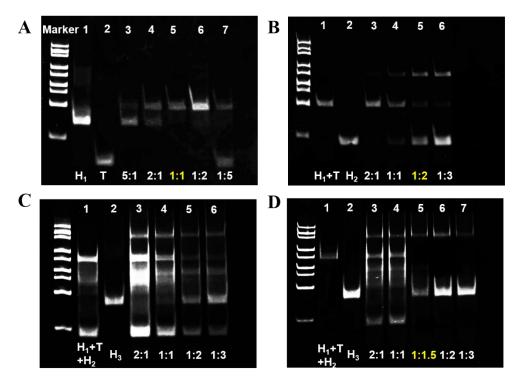



Figure S1. UV-vis spectra of the optimization of the concentration of MB encapsulated in UiO-66-NH $_2$.

Figure S2. 12% native-PAGE images of the concentration ratios of H_1/T (A), $H_1/T/H_2$ (B), $H_1/T/H_2/H_3$ (C-D).

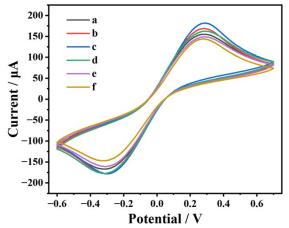
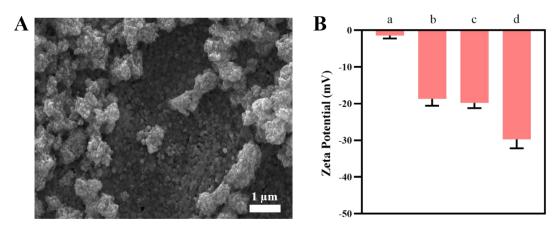
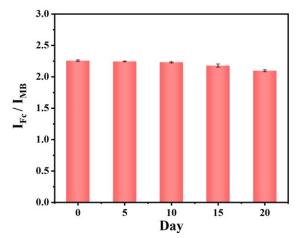




Figure S3. CV curves of $[Fe(CN)_6]^{3-/4-}$ at the bare screen printed carbon electrodes (SPCE) (a), UiO-66-NH2-MB/SPCE (b), UiO-66-NH2-MB/AuNPs/SPCE (c), UiO-66-NH2-MB/AuNPs/MCH/SPCE (d),UiO-66-NH2-MB/AuNPs/MCH/H1/SPCE (e), UiO-66-NH2-MB/AuNPs/MCH/H1/SPCE+ miR-21-5p+H2-Fc+H3-Fc (f) in 0.1 M KCl solution.

Figure S4. A) SEM image after deposition of AuNPs on UiO-66-NH₂-MB SPCE surface. B) Zeta potential measurements of MB (a), UiO-66-NH₂ (b), UiO-66-NH₂-MB (c) and UiO-66-NH₂-MB/AuNPs (d).

Figure S5. Stability testing of mechanically stabilized UiO-66-NH₂-MB screen-printed carbon electrodes for the detection of miR-21-5p on different days.