Supplementary material

A Novel Light-Harvesting ZIF-9-TCPP as a Promising

FRET-based Radiometric Fluorescence Probe for Sperm

Mobility

Yi-Xuan Li^{a, b}, Yu-Xuan Dai^{a, b}, Ju-Zheng Wang^a, Jérome Chauvin^c, Xue-Ji Zhang^d,

Serge Cosnier^{c, e, f}, Robert S Marks^g, Dan Shan^a*

^a School of Environmental and Biological Engineering, Nanjing University of Science

and Technology, Nanjing 210094, P R China

^b College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang

324000, P R China

^c University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France

^d School of Biomedical Engineering, Health Science Centre, Shenzhen University,

Shenzhen 518060, PR China

^e Centre for Organic and Nanohybrid Electronics, Silesian University of Technology,

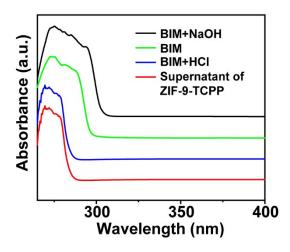
Konarskiego 22B, 44-100 Gliwice, Poland

f Department of Physical Chemistry and Technology of Polymers, Silesian University

of Technology, M. Strzody 9, 44-100 Gliwice, Poland

g Department of Biotechnology Engineering, Ben-Gurion University of the Negev,

Beer-Sheva, 90089, Israel


* Corresponding author:

Email: danshan@njust.edu.cn (D. Shan)

Fax: 0086-25-84303107

1

Supporting Figures

Figure S1. UV–vis spectra of supernatant of ZIF-9-TCPP and BIM at different pH.

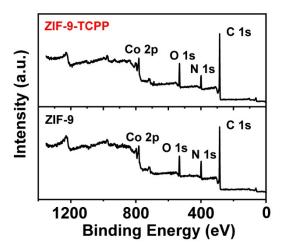


Figure S2. Full XPS spectra of ZIF-9 and ZIF-9-TCPP.

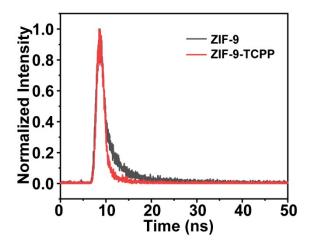
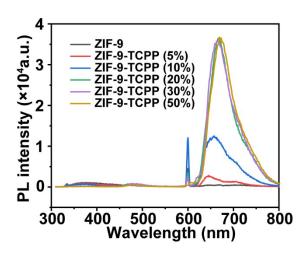
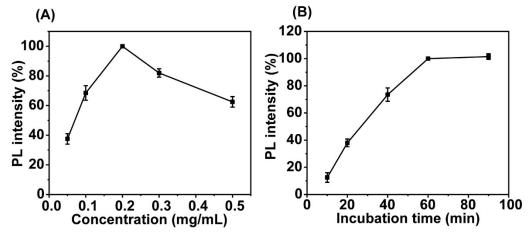




Figure S3. Fluorescence decay profiles of ZIF-9 and ZIF-9-TCPP.

Figure S4. Fluorescence spectra of ZIF-9 and ZIF-9-TCPP with different concentration of TCPP.

Figure S5. (A) PL intensity of different concentration of ZIF-9-TCPP. **(B)** PL intensity at 610 nm under different incubation time during Zn^{2+} detection.

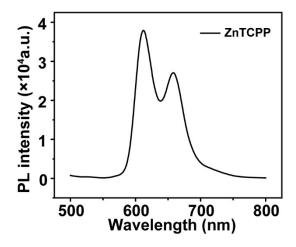


Figure S6. Fluorescence spectra of ZnTCPP.

Table S1. Comparisons of our methods with previous fluorescence probes for Zn²⁺.

Materials	LOD	Linear range	Reference
FHCS	53.7 nM	1-10 μΜ	1
dicyanoisophorone derivative	15.3 nM	0-25 μΜ	2
Tb/Eu(btec)-4	4.2 nM	10 nM-1 mM	3
PDACQDs-SA	90 nM	0-100 μΜ	4
H_1	36 nM	0-10 μΜ	5
ZIF-9-TCPP	0.7 nM	5 nM-2 μM	This work

References

- 1. G. Zhao, G. Wei, Z. Yan, B. Guo, S. Guang, R. Wu, H. Xu, A multiple fluorescein-based turn-on fluorophore (FHCS) identified for simultaneous determination and living imaging of toxic Al³⁺ and Zn²⁺ by improved Stokes shift. *Anal. Chim. Acta*, 2020, **1095**, 185.
- 2. L. Yan, H. Yang, J. Li, C. Zhou, L. Li, X. Wu, C. Lei, A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochlorous acid. *Anal. Chim. Acta*, 2022, **1206**, 339750.
- 3. H. Sha, B. Yan, Terbium-based metal-organic frameworks through energy transfer modulation for visual logical sensing zinc and fluorine ions. *Talanta*, 2023, **257**, 124326.
- 4. J. Ni, L. Kong, M. Tang, Y. Song, J. Zhao, W. Wang, T. Sun, Y. Wang, L. Wang, Sensitive visual detection of intracellular zinc ions based on signal-on polydopamine carbon dots. *Nanotechnology*, 2022, **33**, 185502.
- 5. J. Li, Y. Chen, T. Chen, J. Qiang, Z. Zhang, T. Wei, W. Zhang, F. Wang, X. Chen, A benzothiazole-based fluorescent probe for efficient detection and discrimination of Zn²⁺ and Cd²⁺, using cysteine as an auxiliary reagent. *Sensor. Actuat. B-chem.*, 2018, **268**, 446.