1 Supplementary Material

2

3 The R²D³ approach to fast quantitative NMR: maintaining accuracy and

4 reducing experimental tim	4	reducing	experimental	time
-----------------------------	---	----------	--------------	------

- 5 Margot Sanchez^{1,2*}, Thomas Paris², Anthony Martinez², Gaëtan Assemat³, Serge Akoka¹
- 6
- 7 1: CEISAM, Interdisciplinary Chemistry: Synthesis, Analysis, Modeling, Nantes University-CNRS UMR
- 8 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3, France
- 9
- 10 2: RS²D, 13 rue Vauban, F-67450 Mundolsheim, France
- 11
- 12 3: QUAD SYSTEMS, Industriestrasses 31, CH-8305 Dietlikon, Switzerland

13 * Corresponding Author

- 14 Margot Sanchez
- 15 Email: <u>margot.sanchez@univ-nantes.fr</u>
- 16 Address: CEISAM, Faculté des Sciences et Techniques, 2 Chemin de la Houssinière, BP 92208, 44322
- 17 NANTES CEDEX 3
- 18
- 10
- 19
- 20
- 21
- 22

23 Table of contents

24	Supplementary Material	. 1
25	Section 1: SPINit [®] pulse sequence and process	. 3
26	Section S2: Simulations	. 4
27	Section S3: DEFT optimization	10
28	Section S4: R ² D ³ optimization on vanillin, vinyl acetate and cholesteryl acetate	11
29		

32 Section 1: SPINit[®] pulse sequence and process

Figure S1: Graphical description of the sequence used in the programming interface. Since the sequence
 is programmed using only the graphical interface of SPINit[®], it is not possible to provide a micro program. However, jar files can be sent upon authors requests.

Transpose	
Transnose order: Direct	
Exponential Apply a decreasing exponential apodization.	
Line broadening: 4000.0	
Zero-filling	
increase the size of the rows and ful with zeros.	
• Reconstruction size: 64 • Symmetric: false	
Fourier transform for indirect dimension Compute Fourier transforms adapted to indirect dimension on rows.	
Modulation: NONE	
Transpose	
Transpose the dataset such that the dimensions are cycle-shifted by one.	
Transpose order: Indirect	
Projection	
Projection	
Dimension: 2D	
Start: 27 End: 35	
Operation: mean	
xponential	
Apply a decreasing exponential apodization.	
Line broadening: 2.0	
Forward linear prediction Predict end points of a FID using a SVD method with a discrete regularization.	
Number of previous points: 400 Reconstruction size: 20092	
Constant baseline correction	
Correct the baselines affected by a constant offset.	
Region without signal: End	
Zero-filling	
Increase the size of the rows and fill with zeros.	
Reconstruction size: 131072 Symmetric: false	
Fast Fourier Transform	
Compute the Fourier Transform on rows using Tukey's algorithm.	
Shift: true	
Reverse: true	
Phase correction: false	
Automatic phase correction	
Correct automatically the phase of rows using a region-based method.	
 independent rows: true 	

Figure S2: SPINit[®] screenshot of the process list for the R^2D^3 experiments, with an exponential apodization in the τ_r dimension.

40 Section S2: Simulations

41 All simulations were performed with PTC Mathcad Prime 9.0.0.0®

42

44Figure S3: Simulation of the signal evolution in the τ_r dimension according to the number of rows for45different T1 (2 s blue, 3.5 s red and 5 s green). The τ_r function was an exponential with 8 values ending at46 $\tau_{r min} = 0$ s, zero-filled to a final 64 rows in the τ_r dim. It was assumed that 85% of the magnetization was47recovered after the DEFT block. No nOe was used.

49 50

51

52

53

54

55

56

57

Figure S4: Simulation of the area ratio and the precision (1/SNR) depending on the number added rows in the τ_r dimension. In all cases, the τ_r function was an exponential with 8 values, zero-filled to a final 64 rows in the τ_r dimension. It was assumed that 85% of the magnetization was recovered after the DEFT block. Signals have the following characteristics: the first one has a T₁ of 3.5 s and η =1 for nOe, the second one has a T₁ of 5.0 s and η =0.5, the third one has a T₁ of 2 s and η =1. The green line is the area ratio of the first signal over the second and the blue line is the area ratio of the first signal over the third one. At first, no nOe was used and τ_r^{max} was $10\cdot T_1^{max}$ (a and b); then nOe was added and τ_r^{max} was reduced to only $1\cdot T_1^{max}$ (c and d).

FID generation

$$FI_{i,j} = \left(\sum_{n=0}^{N-1} A_{n,0} \cdot e^{-ii\cdot(2-\pi\cdot A_{n,1}\cdot t^2)} \cdot e^{-\pi\cdot t^2\cdot A_{n,2}} \cdot St(\tau, r_j, A_{n,3}, \lambda, A_{n,4})\right) + Noise_{2D_{i,j}}$$
FID processing
Processing parameters
Time constant of the exponential in the τ -dimension: $pexp := 4$ $h_j := exp(j, pexp)$
Number of points in both dimension, after processing: $SI2 := 4 \cdot TD2$ $SI1 := 64$
Increments used for processing: $k := 0 .. SI2 - 1$ $l := 0 .. SI1 - 1$
Apodization
Exponential in the τ - dimension: $FID_{i,j} := FI_{i,j} \cdot h_j$
Fourier transform
 $S_{k,i} := 0$ $S_{i,j} := FID_{i,j}$
Spec := $tf2D(S)$ $SP_{k,i} := \sqrt[2]{Re(Spec_{k,j})^2 + Im(Spec_{k,j})^2}$ $Sint := mtf(S)$
Profiles extraction
Increments: $p := 0 .. (\frac{SI1}{2} - 1)$ $o := 0 ..5$ $ni := 0$ $nf := SI2 - 1$
Noise level measument: $noises_o := (Re(Sint)^{(6)})_{o+2}$ $se := 2 \cdot max(noises)$
Peak picking: $spectrum := threshold(Re(Sint)^{(6)}, se)$ $D_{k,0} := k - D_{k,1} := spectrum_k$
 $Delta := localmax(D)$ $\delta := Delta^{(6)}$

Figure S5: Screenshot of the PTC Mathcad Prime 9.0.0.0® file used for the simulations.

70 Section S3: DEFT optimization

Table S1: Trueness, represented by the highest difference with the reference (Δ_{ref}^{max}) and precision,
 represented by the highest relative standard deviation (RSD^{max}) on a reference Single Pulse experiment
 with different sampling time (AQ). For AQ < 1000 ms, linear prediction was used to reconstruct an FID of
 the same size as the 1000 ms one. All these experiments were obtained with the same time between
 scans.

AQ (ms)	1 000	750	500	250	125	75
Δ _{ref} ^{max} (%)	Ref	0.37	0.39	0.24	0.47	0.65
RSD ^{max} (%)	0.31	0.41	0.36	0.41	0.63	0.49

77 Section S4: R²D³ optimization on vanillin, vinyl acetate and cholesteryl acetate

Table S2: Highest difference with the reference single pulse (Δ_{ref}^{max}), RSD (RSD^{max}) and smallest signal to noise ratio (SNR^{min}) according to the number of added rows in the τ_r dimension and the apodization in the τ_r dimension, for a τ_r^{max} of 40 s. The values are highlighted based on whether they are below 0.5% (blue), between 0.5% and 1% (green) or between 1% and 5% (orange). Δ_{ref}^{max} , RSD^{max} and SNR^{min} were calculated on a series of 5 vinyl acetate (with Cr(acac)₃) R²D³ spectra.

	Nb rows	1	5	9	15	19	25	31	35	45	49	64
	Δ_{ref}^{max} (%)	3.35	3.04	2.38	1.33	1.26	1.65	1.45	1.20	0.77	0.68	0.51
No apodization	RSD ^{max} (%)	0.33	0.35	0.44	0.70	0.83	0.87	0.87	0.87	0.93	0.98	0.95
((,)	SNR ^{min}	442	457	450	368	347	332	302	289	274	263	253
Exponential	Δ _{ref} ^{max} (%)	1.20	1.15	1.03	0.86	0.75	0.73	0.67	0.61	0.44	0.43	0.26
apodization	RSD ^{max} (%)	0.67	0.68	0.70	0.72	0.74	0.75	0.75	0.75	0.77	0.78	0.83
(τ _r dim.) (b = 2)	SNR ^{min}	393	388	377	356	342	323	306	304	278	272	253
Exponential	Δ _{ref} _{max} (%)	0.64	0.63	0.61	0.46	0.43	0.47	0.46	0.43	0.36	0.32	0.26
apodization	RSD ^{max} (%)	0.72	0.72	0.72	0.80	0.81	0.73	0.80	0.81	0.80	0.77	0.78
(τ _r dim.) (b = 8)	SNR ^{min}	321	320	317	310	305	296	288	282	270	266	253

85

Figure S6: Area ratios C6/C1 (a), C6/C2 (b), C6/C3 (c), C6/C4 (d), C6/C5 (e), C6/C7 (f) and C8/C8 (g) ¹³C positions of vanillin, depending on the number of rows that are added during the projection in the τ_r 86 87 dimension. ¹³C positions are reported in (h). On each graph, the area ratios without any apodization (+) 88 and with an exponential one (b = 4) in the τ_r dimension (\Box) are represented. The dark dashed line is for 89 the area ratio of the reference and the light dashed lines represents a ±1% difference with the 90 reference. The T₁ are 1.3, 2.0, 2.3, 2.4, 1.1, 1.1, 1.2 and 1.2 for C1, C2, C3, C4, C5, C6, C7 and C8, 91 respectively.

98

Table S3: Highest difference with the reference single pulse (Δ_{ref}^{max}), RSD (RSD ^{max}) and smallest signal to
noise ratio (SNR ^{min}) according to the number of added rows in the τ_r dimension and the τ_r^{max} . All of the
spectra were processed with an exponential apodization in the τ_r dimension (b = 4). The values are
, highlighted based on whether they are below 0.5% (blue), between 0.5% and 1% (green) or between 1%
and 5% (orange). Δ _{ref} ^{max} , RSD ^{max} and SNR ^{min} were calculated on a series of 5 vinyl acetate (with Cr(acac) ₃)
R ² D ³ spectra.

τ _r ^{max} (s)	Nb rows	1	5	9	15	19	25	31	35	45	49	64
	Δ _{ref} ^{max} (%)	1.20	1.15	1.03	0.86	0.75	0.73	0.67	0.61	0.44	0.43	0.26
40	RSD ^{max} (%)	0.67	0.68	0.70	0.72	0.74	0.75	0.75	0.75	0.77	0.78	0.83
	SNR min	393	388	377	356	342	323	306	304	278	272	253
	Δ _{ref} ^{max} (%)	1.43	1.37	1.24	1.01	0.96	0.96	0.82	0.89	0.73	0.67	0.44
20	RSD ^{max} (%)	0.68	0.69	0.73	0.75	0.77	0.79	0.81	0.82	0.84	0.84	0.83
	SNR min	392	387	376	354	339	320	303	294	273	268	245
	Δ _{ref} ^{max} (%)	2.59	2.54	2.44	2.27	2.18	2.07	1.97	1.92	1.81	1.78	1.70
10	RSD ^{max} (%)	0.66	0.66	0.66	0.65	0.64	0.64	0.64	0.64	0.65	0.65	0.68
	SNR min	378	373	365	347	336	319	305	297	280	274	253
	Δ _{ref} ^{max} (%)	3.29	3.25	3.16	3.04	3.00	2.98	2.98	3.06	3.25	3.30	3.44
5	RSD ^{max} (%)	0.66	0.68	0.71	0.76	0.79	0.80	0.79	0.79	0.78	0.79	0.87
	SNR min	340	335	319	311	301	288	277	266	254	248	230
	Δ _{ref} ^{max} (%)	3.57	3.53	3.45	3.33	3.29	3.27	3.26	3.24	3.20	3.17	3.11
4	RSD ^{max} (%)	0.84	0.84	0.85	0.86	0.87	0.87	0.87	0.88	0.88	0.88	0.92
	SNR min	346	341	331	312	300	284	271	263	247	241	224
	Δ _{ref} ^{max} (%)	2.74	2.74	2.74	2.82	2.92	3.11	3.31	3.41	3.65	3.72	3.94
3	RSD ^{max} (%)	0.47	0.47	0.50	0.60	0.68	0.80	0.90	0.93	1.05	1.08	1.20
	SNR ^{min}	290	286	278	262	252	240	235	223	210	205	190
	Δ _{ref} ^{max} (%)	4.38	4.35	4.30	4.25	4.25	4.27	4.27	4.24	4.19	4.16	4.02
2	RSD ^{max} (%)	0.70	0.64	0.73	0.68	0.78	0.84	0.87	0.88	0.98	0.98	0.99
	SNR ^{min}	330	326	317	300	289	276	265	258	244	240	223

Table S4: Chemical shifts and T₁ for every ¹³C positions of cholesteryl acetate. The positions used in the
 article are highlighted in grey.

Site	Chem. Shift (ppm)	T1 (s)
C1	170.17	3.0
C2	139.60	1.7
C3	122.59	0.5
C4	73.87	0.6
C5	56.72	0.6
C6	56.23	0.6
C7	50.08	0.6
C8	42.32	4.1
C9	39.79	0.3
C10	39.56	0.7
C11	38.16	0.3
C12	37.05	0.3
C13	36.58	4.7
C14	36.25	0.3
C15	35.84	0.6
C16	31.91	0.3
C17	31.89	0.5
C18	28.26	0.3
C19	28.00	1.8
C20	27.80	0.3
C21	24.31	0.3
C22	23.92	0.5
C23	22.84	1.4
C24	22.60	1.6
C25	21.32	1.1
C26	21.08	0.3
C27	19.30	1.0
C28	18.76	0.8
C29	11.88	1.1

Table S5: Difference with the reference single pulse (Δ_{ref}) and RSD for three sets of τ_r values, three data107processing and two are ratios (C19/C13 for which the T1 ratio is 1.8/4.7=1/2.6 and C26/C13 for which108the T1 ratio is 0.3/4.7=1/15.7). Δ_{ref} and RSD were calculated on a series of 5 cholesteryl acetate R²D³109spectra.

	τ _r param.	τ_r^{max} = 46,5; b=2; τ_r^{min} =0,5		τ _r ^{max} = 4,2; b	=2; τ _r ^{min} =0,5	τ_r^{max} = 41; b=2; τ_r^{min} =6		
	Area ratio	C19/C13	C26/C13	C19/C13	C26/C13	C19/C13	C26/C13	
1 row, no	Δ _{ref} (%)	52.17	62.61	65.44	83.74	6.59	2.48	
dim.)	RSD (%)	1.20	1.63	1.50	1.83	1.90	1.52	
64 rows, no	Δ _{ref} (%)	1.76	0.78	12.17	8.80	2.54	2.08	
dim.)	RSD (%)	3.55	3.60	3.46	4.99	4.57	3.50	
1 row corr., no	Δ _{ref} (%)	1.75	0.77	11.08	9.47	2.57	2.09	
dim.)	RSD (%)	1.20	1.63	1.87	1.89	1.90	1.52	

Table S6: Highest difference with the reference single pulse (Δ_{ref}^{max}) and RSD (RSD^{max}) according to the number of added rows in the τ_r dimension for different τ_r functions and apodization. The values are highlighted based on whether they are below 0.5% (blue). between 0.5% and 1% (green) or between 1% and 5% (orange). Δ_{ref}^{max} and RSD^{max} were calculated on a series of 5 vanillin R²D³ spectra.

τ _r ^{max} (s)	Process	Nb rows	1	5	9	13	15	19	25	31	35	41	45	49	53	57	64
	No apodization	Δ_{ref}^{max} (%)	17.29	14.86	9.45	2.75	1.13	1.55	0.98	1.51	1.74	0.98	0.84	0.71	0.62	0.67	0.63
	(τ _r dim.)	RSD max (%)	0.41	0.34	0.27	0.34	0.35	0.35	0.41	0.43	0.47	0.53	0.54	0.61	0.65	0.68	0.73
26.1	Exponential	Δ_{ref}^{max} (%)	4.14	3.66	2.71	1.63	1.15	0.63	0.70	0.75	0.76	0.74	0.71	0.67	0.65	0.64	0. <mark>6</mark> 3
	dim.) (LB 4k)	RSD ^{max} (%)	0.29	0.29	0.32	0.31	0.33	0.33	0.41	0.46	0.50	0.56	0.59	0.62	0.65	0.68	0.71
12.1	No apodization	Δ_{ref}^{max} (%)	21.85	19.30	13.59	6.48	3.74	1.65	2.02	-0.57	-0.98	-0.98	-0.94	-0.84	-0.86	-0.79	-0.70
15.1	(τ _r dim.)	RSD max (%)	0.48	0.44	0.29	0.25	0.27	0.28	0.26	0.38	0.44	0.53	0.53	0.48	0.47	0.51	0.56
		Δ_{ref}^{max} (%)	27.73	25.27	19.57	12.25	9.24	6.88	6.74	4.15	3.09	3.56	3.12	2.12	1.84	2.26	1.76
0.5		RSD ^{max} (%)	0.38	0.66	0.43	0.41	0.45	0.41	0.34	0.48	0.59	0.65	0.67	0.69	0.70	0.70	0.70
		$\Delta_{ref}^{max}(\%)$	34.81	32.77	27.88	21.22	18.35	15.78	15.35	12.70	11.61	11.94	10.50	10.48	10.13	10.42	9.72
3.3	"	RSD ^{max} (%)	0.50	0.51	0.51	0.47	0.49	0.56	0.67	0.70	0.69	0.61	2.31	0.59	0.61	0.61	0.65
17		$\Delta_{ref}^{max}(\%)$	42.90	41.46	37.59	32.03	29.56	27.26	26.83	24.40	23.35	23.58	23.12	22.21	21.91	22.23	21.77
1.7	//	RSD ^{max} (%)	0.54	0.57	0.49	0.73	0.82	0.88	0.82	0.82	0.82	0.89	0.96	1.00	0.99	0.92	0.93
1.7		$\Delta_{ref}^{max}(\%)$	46.64	45.37	41.84	36.49	33.98	31.32	30.14	27.06	25.67	25.46	24.71	23.55	23.06	23.19	22.21
(b: 2)	"	RSD max (%)	0.48	0.46	0.45	0.52	0.65	0.73	0.72	0.84	0.85	0.79	0.82	0.84	0.82	0.79	0.80
1.7		Δ_{ref}^{max} (%)	37.97	36.37	32.71	27.73	25.71	24.39	25.01	23.20	22.44	22.94	22.60	21.78	21.56	21.93	21.44
(b: 0.5)	//	RSD max (%)	0.59	0.55	0.55	0.70	0.82	0.96	0.98	0.98	0.95	0.87	0.79	0.80	1.31	0.71	0.80

 Table S7: Vinyl acetate experimental time and time saving factor, compared to the reference single pulse with $\tau_r = 10 \cdot T_1^{max}$ for different τ_r^{max} .

τ _r ^{max} (s)	Exp time	Time saving factor
40	3 min 08 s	4.4
20	1 min 42 s	8.0
10	59 s	13.9
5	37 s	22.2
4	33 s	24.8
3	29 s	28.0
2	24 s	34.2

Table S8: Vanillin experimental time and time saving factor, compared to the reference single pulse with128 $\tau_r = 10 \cdot T_1^{max}$ for different τ_r^{max} .

τ _r ^{max} (s)	Exp time	Time saving factor
26.1	47 min 17 s	4.3
13.1	26 min 05 s	7.8
6.5	16 min 21 s	12.4
3.3	11 min 37 s	17.5
1.7	9 min 16 s	21.9
1.7 (b:2)	8 min 47 s	23.2
1.7 (b:0.5)	10 min 17 s	19.8

Table S9: Cholesteryl acetate (1M in CDCl₃) experimental time and time saving factor for three sets of τ_r 132values, compared to the reference single pulse with $\tau_r = 10 \cdot T_1^{max}$ of 1 hour 58 min 31 s.

τ _{r max} (s)	Exp time	Time saving factor
47 (τ _r ^{min} : 0.5)	18 min 32 s	6.4
5 (τ _r ^{min} : 0.5)	3 min 52 s	30.6
47 (τ _r ^{min} : 6)	29 min 50 s	4.0

135Figure S7: Cholesteryl acetate spectra from 170.5 to 169.8 ppm (C1). (a) R^2D^3 rows before processing in136the τ_r dimension and with LB = 0.3 Hz in the direct dimension; and (b) R^2D^3 spectrum after processing in137the τ_r dimension and with LB = 2 Hz in the direct dimension (blue), and single pulse spectrum with138LB = 2 Hz (black). The τ_r function was: $\tau_r^{max} = 46.5$ s. b = 2. $\tau_r^{min} = 0.5$ s.

Table S10: Maximum deviation between two τ_r values (D^{max}) measured for each carbon of cholesteryl acetate and for 3 sets of τ_r.

τ_r^{max} : 41; b: 2; τ_r^{min} : 6		$\tau_r^{max}: 4.1$	τ _r ^{max} : 4.2; b: 2; τ _r ^{min} : 0.5		τ _r ^{max} : 46.5; b: 2; τ _r ^{min} : 0.	
Site	D ^{max} (ppm)	Site	D ^{max} (ppm)	Site	D ^{max} (ppr	
C1	0.009	C1	0.038	C1	0.053	
C2	0.009	C2	0.035	C2	0.048	
C3	0.002	C3	0.006	C3	0.01	
C4	0.003	C4	0.009	C4	0.013	
C5	0.008	C5	0.025	C5	0.036	
C6	0.01	C6	0.036	C6	0.05	
C7	0.009	C7	0.037	C7	0.052	
C8	0.01	C8	0.025	C8	0.034	
C9	0.007	C9	0.027	C9	0.038	
C10	0.01	C10	0.013	C10	0.018	
C11	0.004	C11	0.02	C11	0.028	
C12	0.007	C12	0.022	C12	0.029	
C13	0.006	C13	0.02	C13	0.029	
C14	0.006	C14	0.019	C14	0.024	
C15	0.0006	C15	0.0006	C15	0.003	
C17	0.01	C17	0.024	C17	0.038	
C18	0	C18	0.004	C18	0.003	
C19	0.004	C19	0	C19	0.002	
C20	0.008	C20	0.019	C20	0.027	
C21	0.004	C21	0.009	C21	0.012	
C22	0.002	C22	0.01	C22	0.016	
C23	0.004	C23	0.01	C23	0.014	
C24	0.002	C24	0.004	C24	0.004	
C25	0.006	C25	0.02	C25	0.028	
C26	0.006	C26	0.017	C26	0.024	
C27	0.0003	C27	0.002	C27	0.002	
C28	0.003	C28	0.013	C28	0.019	
C29	0.004	C29	0.009	C29	0.014	
min: 0.000		min	:0.000	min	0.002	
max: 0.010		max	:0.038	max	0.053	
average	:0.005	average	:0.017	average	0.024	