Supporting Information

Label-free miRNA fluorescent biosensor based on duplex-specific

nucleases and silver nanoclusters

Yuxin Zheng,^{1,2} Qian Wang,¹ Zhiying Jin,² Tingting Zhang,¹ Jianshe Huang,*,²

Jianshan Ye,*^{,3} Xiurong Yang^{*,1,2}

¹ School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

² State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China

³ School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

* Fax: +86 431 85689278. E-mail: xryang@ciac.ac.cn, jsye@scut.edu.cn, huangjs@ciac.ac.cn

Table of contents

Table S1. Sequences of nucleic acid molecules used in this studyS-3
Table S2. Comparison of the proposed biosensor with the previously reported methods
for miRNA detectionS-4
Figure S1. AFM images and corresponding height profiles of DNA-AgNCsS-5
Figure S2. The fluorescence emission spectra of the DNA-AgNCs at various excitation
wavelengthsS-6
Figure S3. The repeatability of the fluorescence excitation and emission spectra of
DNA-AgNCsS-6
Figure S4. Fluorescence spectra of the reaction systems using hairpin DNA with
different paired base numbers in the absence and presence of target miR-155S-7
References

Name	Sequence (5'-3')			
miR-155	UUAAUGCUAAUCGUGAUAGGGGU			
cDNA	ACCCCTATCACGATTAGCATTAA			
hp-13bp	CGATTAGCATTAACCCCCCTTAATGCTAATCGTGATA GGGGT			
hp-11bp	ATTAGCATTAACCCCCCTTAATGCTAATCGTGATAGG GGT			
hp-9bp	TAGCATTAACCCCCCTTAATGCTAATCGTGATAGGG GT			
hp-7bp	GCATTAACCCCCCTTAATGCTAATCGTGATAGGGGT			
smiR-155	UUAAUGCUAAUAGUGAUAGGGGU			
tmiR-155	UUAAUACUAAUAGUGAUCGGGGU			
miR-21	UAGCUUAUCAGACUGAUGUUGA			
miR-499	UUAAGACUUGCAGUGAUGUUU			
miR-133a	AGCUGGUAAAAUGGAACCAAAU			

 Table S1. Sequences of nucleic acid molecules used in this study.

Method	Target	Linear range	LOD	Reference
Fluorescence	miR-21	20-160 nM	2.39 nM	1
Fluorescence	miR-21	2-400 nM	0.57 nM	2
Fluorescence	miR-223	0.05-0.6 μM	0.018 µM	3
Fluorescence	miR-362	20-200 nM	6.5 nM	4
Phosphorescence	miR-21	8-80 nM	1.6 nM	5
Colorimetry	miR-141	0-100 nM	0.48 nM	6
Fluorescence	miR-155	1-600 nM	0.86 nM	This work

Table S2. Comparison of the proposed biosensor with the previously reported methods

 for miRNA detection.

Figure S1. (A) AFM images and (B, C) corresponding height profiles of DNA-AgNCs.

Figure S2. The fluorescence emission spectra of the DNA-AgNCs at various excitation wavelengths.

Figure S3. The repeatability of the fluorescence excitation and emission spectra of DNA-AgNCs.

Figure S4. Fluorescence spectra of the reaction systems using hairpin DNA with different paired base numbers in the absence and presence of target miR-155 (500 nM).

References

- 1. X. Li, S. Chen, Q. Liu, Y. Luo and X. Sun, *Chemical Communications*, 2021, 57, 8039-8042.
- 2. X. Ji, Z. Wang, S. Niu and C. Ding, *Microchimica Acta*, 2020, **187**, 249.
- B. Fang, P. Guo, M. Yang, Y. Ma, X. Yan, Z. Jia, W. Gao, S. Ahmad, C. Xu, C. Liu and M. Zhang, *Talanta*, 2020, 218, 121122.
- Z. Jia, K. Tu, Q. Xu, W. Gao, C. Liu, B. Fang and M. Zhang, *Analytica Chimica Acta*, 2021, 1175, 338734.
- 5. J. Lv, Y. Miao and G. Yan, *RSC Advances*, 2017, 7, 41063-41069.
- Y. Park, C. Y. Lee, S. Kang, H. Kim, K. S. Park and H. G. Park, *Nanotechnology*, 2018, 29, 085501.