Supplementary Information

An Integrated Microfluidic Chip for Rapid and Multiple Antimicrobial Susceptibility Testing

Zirui Pang, ‡a Lulu Shi, ‡b Mingyu Wang *b and Jifang Tao*a, c

^a Key Laboratory of Laser & Infrared System Ministry of Education, Shandong University, Qingdao, Shandong 266237, China

^b State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong 266237, China

° School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China

‡These authors contribute equally to this work

* E-mail: E-mail: taojf@sdu.edu.cn, wangmingyu@sdu.edu.cn

Table of contents

Fig. S1. AST and MICs assays off-chip using traditional broth dilution method.

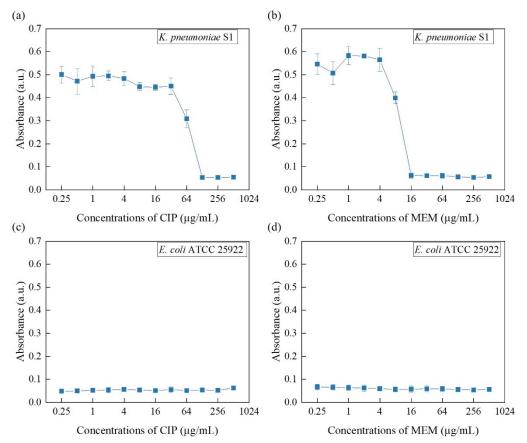
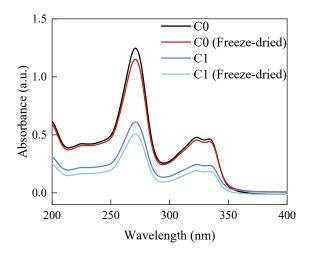

Fig. S2. Absorption spectra of CIP before and after freeze-drying. C0 and C1 represent the concentrations of 128 μ g mL⁻¹ and 64 μ g mL⁻¹ of CIP after a 10-fold dilution, respectively.

Table S1. Comparison of the integrated microfluidic chip in this work with the previously reported microfluidic platforms for AST and MIC determination.


Video S1. The process of self-priming and segmentation captured using high-speed camera.

Video S2. The process of self-priming and segmentation simulated using commercial finite element method (FEM) software.

References

Fig. S1. AST and MICs assays off-chip using traditional broth dilution method. AST for K. pneumoniae S1 inoculated with CIP (a) and MEM (b), and E. coli ATCC 25922 inoculated with CIP (c) and MEM (d) using broth dilution method, respectively. The error bars represent the standard deviation of three replicates.

Fig. S2. Absorption spectra of CIP before and after freeze-drying. C0 and C1 represent the concentrations of 128 μ g mL⁻¹ and 64 μ g mL⁻¹ of CIP after a 10-fold dilution, respectively.

Sample loading	Label	Multiplex detection	MIC determination	Incubation	Reference
methods	probe		methods	time	S
Air pressure-driven	Label-free	Two rows of cell	Bacterial growth	Less than	1
with electropneumatic controller		traps	rates	30 min	
Pump-driven	Resazurin	Seven linear	Relative increment of	8–9 h	2
		channels	fluorescence intensity		
Centrifugal force-	Label-free	Multiplexed drug	Morphological	3 h	3
driven		testing	changes and number		
			of bacteria		
Self-partitioning	Label-free	192 nanoliter-sized	Morphological	Within 3	4
SlipChip		compartments	changes and number	hours	
			of bacteria		
Pre-degassing and	Resazurin	-	Digital resazurin	About 3 h	5
vacuum-driven			assay		
Self-priming and	Label-free	Eight detection	Number of bacteria	2 h	This work
vacuum-driven		areas			

Table S1. Comparison of the integrated microfluidic chip in this work with the previously reported microfluidic platforms for AST and MIC determination.

References

- Ö. Baltekin, A. Boucharin, E. Tano, D. I. Andersson and J. Elf, Proc. Natl. Acad.
 Sci. U.S.A., 2017, **114**, 9170–9175.
- 2 M. Osaid, Y.-S. Chen, C.-H. Wang, A. Sinha, W.-B. Lee, P. Gopinathan, H.-B. Wu and G.-B. Lee, Lab Chip, 2021, **21**, 2223–2231.
- 3 S. Hwang and J. Choi, Lab Chip, 2023, 23, 229–238.
- 4 X. Li, X. Liu, Z. Yu, Y. Luo, Q. Hu, Z. Xu, J. Dai, N. Wu and F. Shen, Lab Chip, 2022, **22**, 3952–3960.
- 5 W. Wu, G. Cai, Y. Liu, Y. Suo, B. Zhang, W. Jin, Y. Yu and Y. Mu, Lab Chip, 2023, **23**, 2399–2410.