### **Electronic Supplementary Information (ESI)**

# Molecular combination between alkanolamines and galvinol for ratiometric colorimetric sensing of CO<sub>2</sub> gas

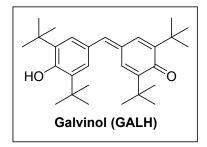
Ajay Kumar Sharma,<sup>a,b</sup> Poonam Sharma,<sup>a,b</sup> Pushkar Mehara<sup>a,b</sup> and Pralay Das<sup>\*a,b</sup>

<sup>a</sup> Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, H.P., India, Fax: +91-1894-230433, \*E-mail: pdas@ihbt.res.in, pralaydas1976@gmail.com

<sup>b</sup> Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

| S. No. | Content                                                                        | Page No. |
|--------|--------------------------------------------------------------------------------|----------|
| 1.     | General information                                                            | S2       |
| 2.     | Procedure for synthesis of galvinol                                            | S2       |
| 3.     | Characterization data for galvinol                                             | S3-S4    |
| 4.     | General procedure for spectroscopic measurements and Table S1                  | S5       |
| 5.     | Solvent screening for CO <sub>2</sub> sensor development (Table S2)            | S6       |
| 6.     | Visual appearance for GAL-MEA and GAL-DEA on treating with                     | S6       |
|        | different volumes of CO <sub>2</sub> (Figure S4)                               |          |
| 7.     | UV-vis spectra wavelength changes of GAL- MEA and GAL-DEA in                   | S6       |
|        | CCH <sub>3</sub> CN (Table S3)                                                 |          |
| 8.     | Ratiometric plot for GAL-MEA and GAL-DEA (table S5)                            | S6       |
| 9.     | Calculation for limit of detections (LODs)                                     | S7       |
| 10.    | Mass flow controller used for colorimetric CO <sub>2</sub> sensing (Figure S6) | S8       |
| 11.    | pH interference study for GAL-MEA and GAL-DEA probes (Figure S7)               | S8       |
| 12     | Comparison of key sensor parameters of present work with literature            | S9-S10   |

#### **General Information:**


Butylated hydroxyl toluene (BHT), tetrabutylammonium fluoride (TBAF) other reagents and solvents (CH<sub>3</sub>CN, THF, acetone, MEA, DEA, and TEA) used in this study were purchased from Sigma-Aldrich, Avra synthesis, Sd Fine-chem Ltd., and Central Drug House (CDH) Pvt. Ltd. Companies. Reactions were monitored by thin layer chromatography (TLC) which was performed using precoated silica gel plates 60F254 (Merck) in a UV light detector. ESI-MS spectra were recorded using a Waters micro mass Q-TOF Ultima Spectrometer. <sup>1</sup>H and 13C NMR spectra were recorded using a Jeol India (Model: JNM ECX -500) NMR spectrometer operating at 500 MHz (1H) and 125 MHz (<sup>13</sup>C). The spectra were recorded at 25 °C in CDCl<sub>3</sub> [residual CHCl<sub>3</sub> ( $\delta_{\rm H}$  7.26 ppm) and CHCl<sub>3</sub> ( $\delta_{\rm C}$ 77.00 ppm)]. Chemical shifts were recorded in  $\delta$  (ppm) relative to the TMS and NMR solvent signal. Coupling constants ( $\mathcal{J}$ ) are given in Hz and multiplicities of signals are reported as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; brs, broad singlet. Deionized water was prepared by the Milli-Q water ion exchange system and was used for performing water cross-sensitivity experiments. The UV-Vis absorption spectra were recorded through NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific<sup>TM</sup>). FT-IR spectra were recorded on a Shimadzu 8400 FT-IR spectrophotometer in the 4000-400 cm<sup>-1</sup> wavelength region. ESI-MS spectra were recorded using high-resolution 6560 Ion Mobility Q-TOF LC/MS (Agilent, Santa Clara, USA). The melting point range of synthesized compounds was recorded using visual melting range instrument {LABINDIA (MR-VIS<sup>+</sup>)}. The CO<sub>2</sub> gas measurement was performed by mass flow controller (Alicat Mass Flow Controller Mode: MC-100SCCM-D-DB9M/5M, 5IN, RIN, LVD, RVD) having standard Accuracy: ±0.6% of reading OR  $\pm 0.1\%$  of full scale, whichever is greater.

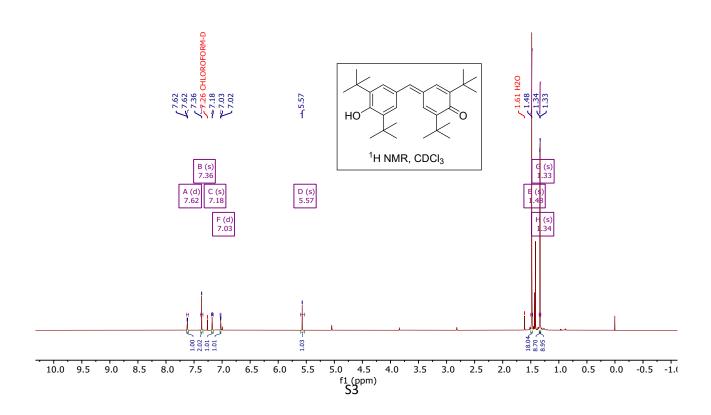
**Procedure for synthesis of galvinol:** The synthesis of galvinol was performed by our previously developed method, i.e. 100 mg (0.45 mmol) of butylated hydroxytoluene (BHT) was heated with 1.2 equivalents (0.54 mmol) of tetrabutylammonium fluoride (TBAF) on a magnetic stirrer using 1.0 mL acetonitrile (CH<sub>3</sub>CN) solvent at 130 °C in a 50 mL round bottom flask (RBF) under an open-air environment in a fume hood. It may be noted that the boiling point of CH<sub>3</sub>CN solvent is 82 °C and evaporates after some time leaving a deep purple colour paste behind. Therefore, to maintain the homogeneity of the reaction mixture during the interval of 5-hour reaction time, 2.0 mL of CH<sub>3</sub>CN solvent was further added at the time interval of 1.5 hours. The progress of the reaction was monitored by TLC. After the completion of the reaction, the mixture was cooled to room temperature, and a thick purple colour paste was obtained. The reaction mixture was subjected to acidic workup with the

help of dil. HCl (4N) during which the purple colour immediately converted to an oily thick brownish layer. Water was added to the reaction mixture and the organic mixture was extracted with ethyl acetate (5 X 2 mL). The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under a vacuum. The resulting residue was directly purified by column chromatography on silica gel using pure n-hexane as eluent to give the galvinol as the final product.

# Characterization data for galvinol and by-products obtained (<sup>1</sup>H, <sup>13</sup>C NMR, HRMS, and GC-MS):

## 2,6-di-tert-butyl-4-(3,5-di-tert-butyl-4-hydroxy benzylidene)cyclohexane-2,5-dien-1-one (or Galvinol):




Yield: 0.45 mmol scale, 52.0 mg, 55 % isolated yield. (Yellow solid, Melting point: 154-156 °C).

<sup>1</sup>**H NMR (CDCl<sub>3</sub>, 600 MHz):** δ 7.62 (d, *J* = 2.5 Hz, 1H, Ar-H), 7.36 [s, 2H, {CHC(CH3)3}2], 7.18 (s, 1H, Ar-CH=C), 7.03 (d, *J* = 1.4 Hz, 1H, Ar-H), 5.57 (s, 1H, OH), 1.48 [s, 18H, (CH<sub>3</sub>)<sub>3</sub>], 1.34 [s, 9H,

(CH<sub>3</sub>)<sub>3</sub>], and 1.33 [s, 9H, (CH<sub>3</sub>)<sub>3</sub>].

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 151 MHz): δ 186.54, 155.60, 148.82, 146.92, 144.65, 136.50, 135.79, 129.98, 128.29, 127.68, 35.57, 35.05, 34.54, 30.35, 29.77, 29.63.

HRMS (APCI/TOF): Calculated for (C<sub>29</sub>H<sub>42</sub>O<sub>2</sub>+H<sup>+</sup>]: 423.3258. Found: 423.3236.



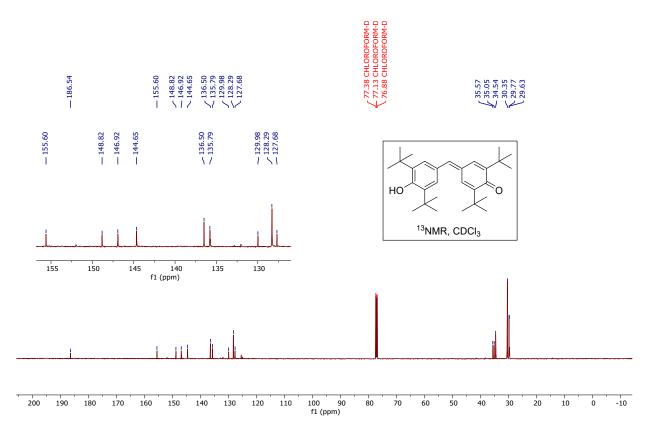
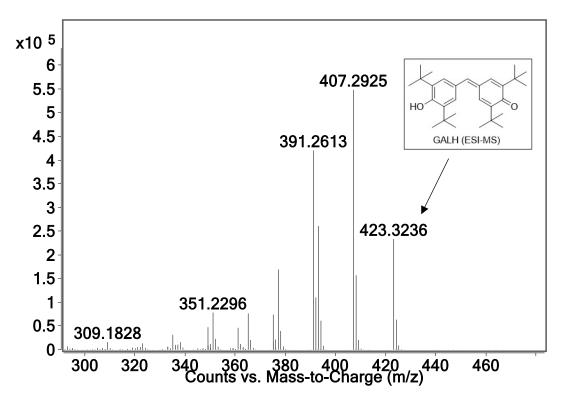
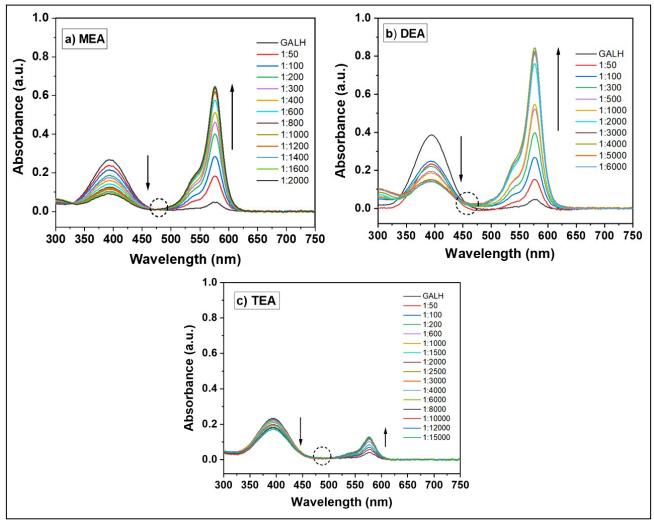




Figure S1. <sup>1</sup>H & <sup>13</sup>C NMR spectra of galvinol.




#### Figure S2. HRMS (ESI) spectra of galvinol.

#### General procedure for spectroscopic measurements

#### Titration of galvinol with fluoride Ion:

The alkanolamines concentration required for the ionization of galvinol (GALH) was determined by systematic UV-Vis absorbance spectroscopic titration in CH<sub>3</sub>CN solvent. For UV-Vis spectroscopic measurements 10.0 mM GALH solution was prepared in dry CH<sub>3</sub>CN solvent and was further diluted to 8  $\mu$ M by adding 0.8  $\mu$ L to 999.2  $\mu$ L solution of different MEA, DEA and TEA concentrations prepared in dry CH<sub>3</sub>CN solvent to give 1.0 mL of GAL-MEA, GAL-DEA and GAL-TEA respectively. The study revealed that 2000 equivalents of MEA and 6000 equivalents of DEA were



sufficient with respect to GALH (8  $\mu$ M) for obtaining an absorption maximum at 577 nm due to GALH deprotonation (Figure S3a-b). Furthermore, TEA addition was not able to deprotonate GALH even when it was added in 15000 equivalents to that of GALH (8  $\mu$ M) (Figure S3c, Table S1).

**Figure S3.** Optimization for complete ionization of galvinol in alkanolamines (a) MEA, (b) DEA, and (c) TEA.

| Alkanolamine | <b>Concentration for GALH</b> | Composition                        |  |  |  |
|--------------|-------------------------------|------------------------------------|--|--|--|
|              | ionization (8 µM)             |                                    |  |  |  |
| MEA          | 16 mM                         | 1:2000 (GAL-MEA)                   |  |  |  |
| DEA          | 48 mM                         | 1:6000 (GAL-DEA)                   |  |  |  |
| TEA          | Tested up to 120 mM           | 1:15000 (GAL-TEA), Poor ionization |  |  |  |

Table S1: MEA, DEA and TEA concentration optimization for galvinol ionization in CH<sub>3</sub>CN

solvent

| Solvent            | GAL-MEA    |                                      |     | GAL-DEA    |                          |               |
|--------------------|------------|--------------------------------------|-----|------------|--------------------------|---------------|
|                    | Ionization | CO <sub>2</sub> Response Recyclabili |     | Ionization | CO <sub>2</sub> Response | Recyclability |
| CH <sub>3</sub> CN | Yes        | Yes                                  | Yes | Yes        | Yes                      | Yes           |
| THF                | No         | -                                    | -   | No         | -                        | -             |
| DMSO               | Yes        | Very poor                            | -   | Yes        | Very poor                | _1            |
| Acetone            | Yes        | Yes                                  | No  | Yes        | Yes                      | Very poor     |

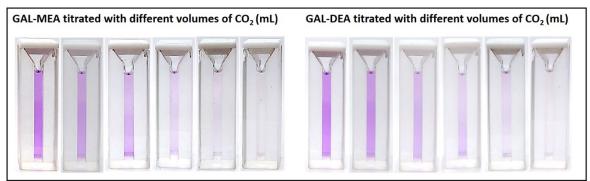



Table S2: Solvents (polar aprotic) screening for CO<sub>2</sub> sensor development

Figure S4. GAL-MEA and GAL-DEA treated with increasing order of CO<sub>2</sub> gas volume (mL).

| Table S3: UV-vis spectra | wavelength changes | of GAL- MEA | and GAL-DEA in CH <sub>3</sub> CN |
|--------------------------|--------------------|-------------|-----------------------------------|
|                          |                    |             |                                   |

| Parameter         | GAL-MEA      | GAL-MEA | GAL-DEA       | GAL-DEA |  |
|-------------------|--------------|---------|---------------|---------|--|
|                   | (GALH: MEA = | $+CO_2$ | (GALH: DEA    | $+CO_2$ |  |
|                   | 1: 2000)     |         | = 1: 6000)    |         |  |
| Wavelength 577 nm |              | 392 nm  | 577 nm 392 nm |         |  |
| Blue shift        | 185 nm       | ı       | 185 nm        |         |  |
| Isosbestic point  | 470-485      | nm      | 5 nm          |         |  |

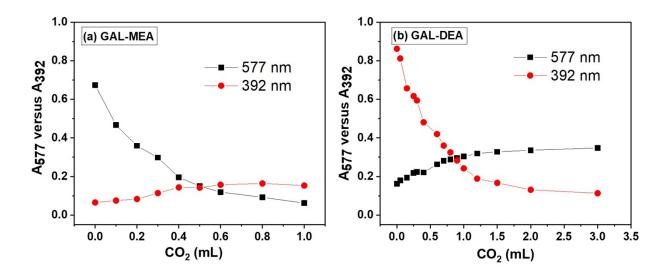



Figure S5: Ratiometric change for GAL-MEA (a) and GAL-DEA (b) on titration with CO<sub>2</sub>.

#### **LOD calculations:**

The LOD was calculated by using the formula =  $3\sigma/m$ 

Where  $\sigma$  is the standard deviation of the blank samples (i.e. GAL-MEA and GAL-DEA) and m is the slope calculated from the logarithm of the absorbance ratio calibration curve; A stands for absorbance peak intensity.

(a) GAL-MEA in CH<sub>3</sub>CN (1.0 mL):

 $A = 2.04298 [CO_2] - 1.01475$ 

 $R^2 = 0.99185$ ,  $CO_2 = 0-0.5$  mL

As, LOD =  $3\sigma/m$ 

Where,  $\sigma$  = Standard deviation of blank solution (GAL-MEA) measured by 10 times;

```
m = 2.04298
```

```
LOD = 19 ppm
```

(b) GAL-DEA in CH<sub>3</sub>CN (1.0 mL):

 $A = 0.79056[CO_2] - 0.6731$ 

 $R^2 = 0.99057$ ,  $CO_2 = 0-1.0$  mL

As,  $LOD = 3\sigma/m$ 

Where,  $\sigma$  = Standard deviation of blank solution (GAL-DEA) measured by 10 times;



m = 0.79056

LOD = 31 ppm

Figure S6: Mass flow controller used for CO<sub>2</sub> volume (mL) measurement.

#### pH interference study for GAL-MEA and GAL-DEA probes:

The pH interference study for GAL-MEA and GAL-DEA probes in CH<sub>3</sub>CN solvent using buffer solutions of different pH (potassium hydrogen phthalate/benzethonium chloride for pH 3.0-5.0, potassium dihydrogen phosphate/ disodium hydrogen phosphate/benzethonium chloride for pH 6.0-7.0, sodium tetraborate decahydrate/benzethonium chloride for pH 8.0-10.2 adjusted with the help of H<sub>3</sub>PO<sub>4</sub>/NaOH). The absorption maximum of GAL-MEA and GAL-DEA in CH<sub>3</sub>CN at 577 nm in 1% v/v water and of 1% v/v respective buffer solution was compared.

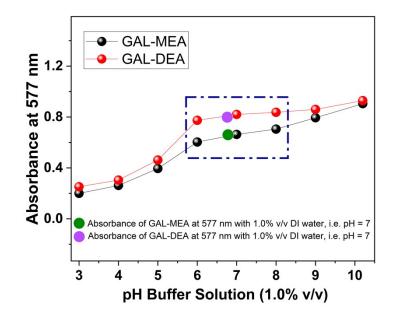



Figure S7: pH interference study for GAL-MEA and GAL-DEA probes.

Table S4: Comparison of key sensor parameters of present work with previously published colorimetric CO<sub>2</sub> sensor development-based reports

| Sr. | Sensing material                       | Limit of detection        | Reversible | Humidity (or | Water as | Major advantages                              | References                        |
|-----|----------------------------------------|---------------------------|------------|--------------|----------|-----------------------------------------------|-----------------------------------|
| No. | components                             | (LOD) and detection       |            | water) Cross | part of  |                                               |                                   |
|     |                                        | range (ppm or %)          |            | sensitivity  | sensor   |                                               |                                   |
| 1   | Polydiacetylene,                       | Found sensitive to        | No         | -            | Yes      | Naked-eye colorimetric                        | J. Am. Chem. Soc.                 |
|     | functionalized with amines             | detection atmospheric     |            |              |          | and fluorometric CO <sub>2</sub>              | 2013, <b>135</b> , 17751-         |
|     | and imidazolium groups in              | level of $CO_2$ (i.e. 400 |            |              |          | detection                                     | 17754                             |
|     | 0.5% aqueous                           | ppm)                      |            |              |          |                                               |                                   |
|     | triethylamine                          |                           |            |              |          |                                               |                                   |
| 2   | Tetrapropyl                            | ~30 ppm                   | No         | -            | No       | Naked-eye colorimetric                        | J. Am. Chem. Soc.,                |
|     | benzobisimidazolium salt               |                           |            |              |          | and fluorometric $CO_2$                       | 2012, <b>134</b> , 17846-         |
|     | and tetrabutylammonium                 |                           |            |              |          | detection                                     | 17849                             |
|     | fluoride in CH <sub>3</sub> CN solvent |                           |            |              |          |                                               |                                   |
| 3   | Cresol red pH-indicator dye            | >400 ppm and range        | Yes        | No           | No       | Solid-state sensors for                       | J. Mater. Chem.                   |
|     | and tertiary amino alcohols            | 500- 2600 ppm             |            |              |          | CO <sub>2</sub> and SO <sub>2</sub> detection | <i>A</i> , 2015, <b>3</b> , 5642- |
|     | immobilized on a porous $\gamma$ -     |                           |            |              |          |                                               | 5647                              |
|     | aluminium oxide support                |                           |            |              |          |                                               |                                   |
| 4   | Thiol and amine groups                 | ~120 ppm                  | No         | -            | Yes      | Naked-eye colorimetric                        | Chem. Eur. J.,                    |
|     | functionalized silica                  |                           |            |              |          | CO <sub>2</sub> detection                     | 2013, <b>19</b> , 17301-          |
|     | nanoparticles with                     |                           |            |              |          |                                               | 17304                             |
|     | squaraine dye                          |                           |            |              |          |                                               |                                   |
| 5   | <i>m</i> -cresol purple, tetraoctyl    | Detection range 0-4%      | Yes        | Yes          | Yes      | Plasticized and                               | Sensors and                       |
|     | ammonium hydroxide,                    | dissolved CO <sub>2</sub> |            |              |          | unplasticized polymer                         | Actuators B.                      |
|     | ethylcellulose,                        |                           |            |              |          | colorimetric film sensors                     | 1994, <b>21</b> , 83-89           |
|     | tributylphosphate, glass               |                           |            |              |          | for CO <sub>2</sub> gas detection             |                                   |
|     | slide.                                 |                           |            |              |          |                                               |                                   |
| 6   | <i>m</i> -cresol purple,               | -                         | Yes        | Minor        | Yes      | Thermoplastic                                 | J. Mater. Chem.                   |

|   | hydrophobic silica,              |                             |     |            |     | incorporated CO <sub>2</sub> -       | 2010, <b>20</b> ,5008–    |
|---|----------------------------------|-----------------------------|-----|------------|-----|--------------------------------------|---------------------------|
|   | tetrabutylammonium               |                             |     |            |     | sensitive pigments                   | 5010                      |
|   | hydroxide                        |                             |     |            |     |                                      |                           |
| 7 | pH indicator cresol red          | Detection range 0.1-        | Yes | -          | Yes | Colorimetric CO <sub>2</sub> sensors | Science of The            |
|   | encapsulated in gas-             | 30% CO <sub>2</sub> in soil |     |            |     | for large scale monitoring           | Total                     |
|   | permeable membrane and           |                             |     |            |     | sites                                | Environment               |
|   | acryl reactor                    |                             |     |            |     |                                      | 2020, <b>729</b> , 138786 |
|   |                                  |                             |     |            |     |                                      |                           |
| 8 | Neutral red, phenol red and      | LOD as ~1.98 ppm in         | Yes | Yes        | Yes | Colorimetric detection of            | 3 Biotech. 2022,          |
|   | <i>m</i> -cresol purple solution | the range of 50-120         |     |            |     | CO <sub>2</sub> in low concentration | <b>12</b> , 334           |
|   |                                  | ppm                         |     |            |     |                                      |                           |
| 9 | Alkanolamines (MEA and           | LOD as ~19 ppm in           | Yes | Negligible | No  | New molecular system,                | Present work              |
|   | DEA) and galvinol in             | GAL-MEA and range           |     |            |     | Low-cost, easy to                    |                           |
|   | CH <sub>3</sub> CN solvent       | upto 1808 ppm; ~31          |     |            |     | fabricate, Rapid response            |                           |
|   |                                  | ppm in GAL-DEA and          |     |            |     | for very low $CO_2$                  |                           |
|   |                                  | range upto 5409 ppm         |     |            |     | concentrations                       |                           |