Supporting Information

Evaluating Sample Normalization Methods for MS-based Multi-omics and the Application to a Neurodegenerative Mouse Model

Gwang Bin Lee¹, Cha Yang², Fenghua Hu², and Ling Hao^{1*}

¹Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742.

²Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology,

Cornell University, Ithaca, NY 14853, USA

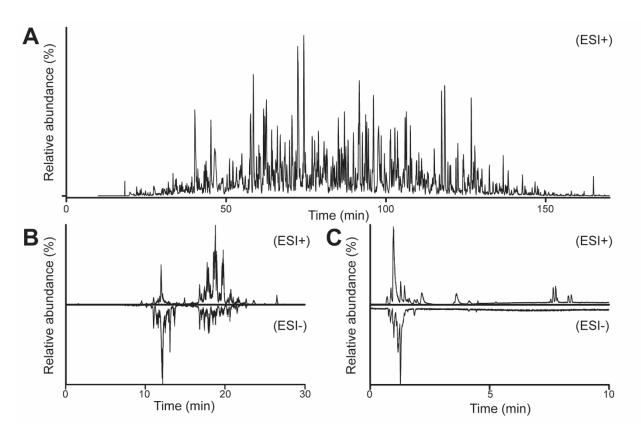
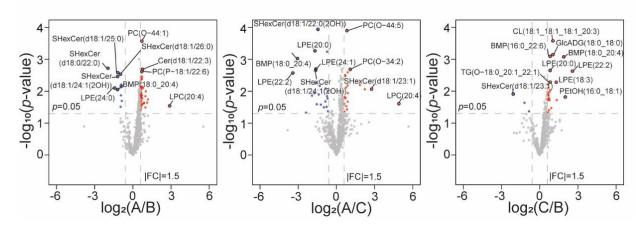

*Corresponding author Ling Hao Associate Professor Department of Chemistry and Biochemistry University of Maryland E-mail: linghao1@umd.edu

TABLE OF CONTENTS


- **Table S1.** The list of internal standards for lipidomics and metabolomics.
- Fig. S1. Example LC-MS chromatograms from (A) proteomics, (B) lipidomics, and (C) metabolomics for mouse brain.
- Fig. S2. Volcano plots showing the influence of normalization methods on lipidomics.
- Fig. S3. Volcano plots showing the influence of normalization methods on metabolomics.
- Fig. S4. Example lipid concentrations measured from *GRN* KO vs. WT mouse brains.
- **Supplementary Data (Excel).** The complete datasets for quantitative proteomics, lipidomics and metabolomics in three different sample normalization methods and *GRN* KO mouse brain.

Category	Compound name	Adduct	m/z	Spiked conc. (nmol/mL)
Lipidomics	SM (d18:1/18:1-d9)	$[M+H]^+$	738.6475	18.1
Lipidomics	Cer (d18:1-d7/15:0)	$[M+H]^+$	531.5465	25.1
Lipidomics	MG (18:1-d7)	$\left[M+NH_4 ight]^+$	381.3704	36.7
Lipidomics	DG (15:0/18:1-d7)	$\left[\mathrm{M}{+}\mathrm{NH}_{4} ight]^{+}$	605.5849	22.7
Lipidomics	LPC (18:1-d7)	$[M+H]^+$	529.3998	25.2
Lipidomics	LPE (18:1-d7)	$[M+H]^+$	487.3529	27.4
Lipidomics	TG (15:0/18:1-d7/15:0)	$\left[M+NH_4 ight]^+$	829.7989	16.4
Lipidomics	CE (18:1-d7)	$\left[M+NH_4 ight]^+$	675.6780	20.3
Lipidomics	PC (15:0/18:1-d7)	$[M+H]^+$	753.6138	17.7
Lipidomics	PE (15:0/18:1-d7)	$[M+H]^+$	711.5669	18.8
Lipidomics	PG (15:0/18:1-d7)	[M-H] ⁻	740.5469	17.5
Lipidomics	PS (15:0/18:1-d7)	[M-H] ⁻	753.5422	17.2
Lipidomics	PI (15:0/18:1-d7)	[M-H] ⁻	828.5630	15.7
Metabolomics	¹³ C ₅ , ¹⁵ N folic acid	[M+H] ⁺ [M-H] ⁻	448.1613 446.1462	51.4

Table S1. The spiked internal standards for lipidomics and metabolomics and their concentration.

Fig. S1. Example LC-MS chromatograms from (A) proteomics, (B) lipidomics, and (C) metabolomics from mouse brain tissue.

Fig. S2. Volcano plots showing the influence of normalization methods on lipidomics. A, B, C represents three different normalization methods.

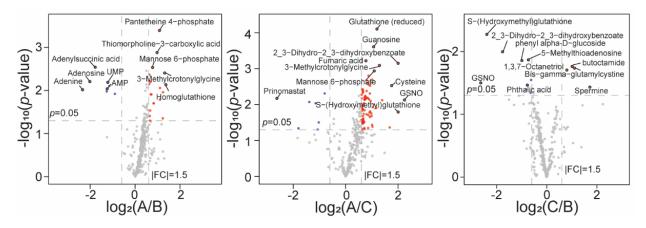


Fig. S3. Volcano plots showing the influence of normalization methods on metabolomics.

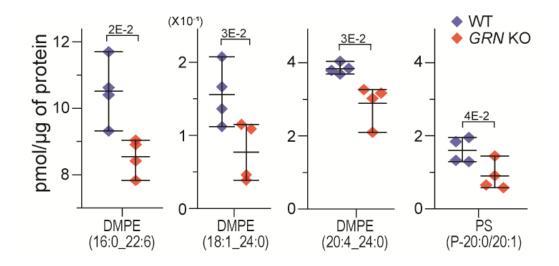


Fig. S4. Example lipid concentrations measured from GRN KO vs. WT mouse brains.