Supplementary Material

A Screening Method for the Quantitative Determination of Selective Androgen Receptor Modulators (SARMs) in Capsules by High Resolution ¹⁹F- and ¹H-NMR Spectroscopy

Alessandro Maccelli, Anna Borioni, Federica Aureli, Maria Cristina Gaudiano, Livia Manna, Mariangela Raimondo*

Chemical Medicines Unit, National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy

p3 Figure S1. Mass spectrometry: extracted ion chromatograms (EIC) of the SARMs reference standards.

p4 Figure S2. Superimposition of the total ion chromatograms of the SARMs samples (full line) with the reference standards EIC (dotted line). The good overlapping of the full line and the dotted line, and the absence of signals in the blank chromatogram (not shown), confirmed the selectivity of the MS method.

p5 Figure S3. Comparison of the experimental isotope distribution of the SARMs (Panel A) with the corresponding theoretical distribution (Panel B). The good match of the m/z distributions supported identification.

p6 Figure S4. ¹H, ¹³C, ¹H-¹³C HSQC, ¹H-¹³C HMBC spectra of Cardarine reported as an example.

Panel A: Zoom of the ¹H spectrum. The signals of the five non-equivalent proton groups are present in the 8.7-6.5 ppm aromatic range. The singlet at about 9.7 ppm was assigned to the carboxyl proton; **Panel B**: Zoom of the ¹³C spectrum. The numerous signals detected in the 140-120 ppm range are partly due to the splitting caused by carbon-fluorine coupling; **Panel C**: Zoom of the ¹³C spectrum evidencing the signal quartets of the carbons coupled to fluorines. The quartets are evidenced by blue brackets. The signal of the carbon directly bonded to fluorine is centred at about 124 ppm and shows a 272.4 Hz carbon-fluorine coupling (CF₃, J_{C-F}=272.4 Hz). The quartet at 129 ppm belongs to the carbon one bond apart from fluorine (C4", J_{C-F}=34.0 Hz) and the tight quartet at about 126 ppm was assigned to the carbons two bonds apart from fluorine (C3",C5" J_{C-F}=3.7 Hz); **Panel D**: Superimposed ¹H-¹³C HMBC (blue) and ¹H-¹³C HSQC (green/pink) spectra. The pink and green cross peaks represent proton correlation with CH₂ and CH/CH₃ groups respectively. The blue cross peaks are representative of the structural carbon backbone. It is noteworthy that each of two methyl groups found at about 2 ppm selectively correlates to the closer aromatic ring in the structure (circled in red). **p8 Figure S5.** Comparison between SARMs extraction performed in EtOH (red) vs DMSO (blue). Results are reported as % in respect to the declared content.

p9 Figure S6. Overlapped 1H- NMR spectra obtained by the pulse programs: zg (blue), zgpr (red), noesygppr1d (green), cpmgpr1d (purple). The SARMs spectra are coded as follows: Andarine (panel A), Cardarine (panel B), Ligandrol (panel C), Ostarine (panel D), S-23 (panel E).

p10 Figure S7. qNMR linearity for ¹⁹F-zgig30 (blue profile), ¹H-zg (orange profile) and ¹H-zgpreq (green profile) per SARM. The linear regression equation and R² are reported for each NMR experiment.

p11 Figure S8. Trend of the residuals of qNMR linearity for ¹⁹F-zgig30 (blue profile), ¹H-zg (orange profile) and ¹H-zgpreq (green profile) per SARM. All residuals are within $\pm 2\sigma$ as evidenced in the inserts.

p12 Table S1. Acquisition and processing parameters of ¹⁹F- and ¹H-qNMR analytical methods

p13 Table S2. Summary of Mass Spectrometry results.

p14 Table S3. Repeatability obtained by six consecutive measurements of each SARM by ¹⁹F-NMR. Results are expressed as mg/capsule. RSD threshold limit was 1.5%.

p15 Table S4. Intermediate precision of ¹⁹F-qNMR. Each sample content is reported as mg/cps. The results were obtained from integrations of the same samples performed by three different operators. The RSD is within 3.0% for all the experiments.

p16 Table S5. Precision (RSD) of the results obtained on three samples for each NMR experiment. The % is referred to the intermediate weight. All the weights are within the linearity range.

p17 Table S6. Linear and Multiple Regression and Correlation of the pulse programs ¹⁹F-zgig30, ¹H-zg, ¹H-zgpreq.

p18 Table S7. LOD and LOQ per SARM referred to each pulse program.

p19 Table S8. Robustness: acquisition parameters and results for the following pulse programs: ¹⁹F-zgig30 (upper section), ¹H-zg (intermediate section) and ¹H-zgpreq (lower section).

Figure S1. Mass spectrometry: extracted ion chromatograms (EIC) of the SARMs reference standards.

Figure S2. Superimposition of the total ion chromatograms of the SARMs samples (full line) with the reference standards EIC (dotted line). The good overlapping of the full line and the dotted line, and the absence of signals in the blank chromatogram (not shown), confirmed the selectivity of the MS method.

Figure S3. Comparison of the experimental isotope distribution of the SARMs (Panel A) with the corresponding theoretical distribution (Panel B). The good match of the m/z distributions supported identification.

Figure S4. ¹H, ¹³C, ¹H-¹³C HSQC, ¹H-¹³C HMBC spectra of Cardarine reported as an example. **Panel A**: Zoom of the ¹H spectrum. The signals of the five non-equivalent proton groups are present in the 8.7-6.5 ppm aromatic range. The singlet at about 9.7 ppm was assigned to the carboxyl proton; **Panel B**: Zoom of the ¹³C spectrum. The numerous signals detected in the 140-120 ppm range are partly due to the splitting caused by carbon-fluorine coupling; **Panel C**: Zoom of the ¹³C spectrum evidencing the signal quartets of the carbons coupled to fluorines. The quartets are evidenced by blue brackets. The signal of the carbon directly bonded to fluorine is centred at about 124 ppm and shows a 272.4 Hz carbon-fluorine coupling (CF₃, $J_{C-F}=272.4$ Hz). The quartet at 129 ppm belongs to the carbon one bond apart from fluorine (C4", $J_{C-F}=34.0$ Hz) and the tight quartet at about 126 ppm was assigned to the carbons two bonds apart from fluorine (C3",C5" $J_{C-F}=3.7$ Hz); **Panel D**: Superimposed ¹H-¹³C HMBC (blue) and ¹H-¹³C HSQC (green/pink) spectra. The pink and green cross peaks represent proton correlation with CH₂ and CH/CH₃ groups respectively. The blue cross peaks

are representative of the structural carbon backbone. It is noteworthy that each of two methyl groups found at about 2 ppm selectively correlates to the closer aromatic ring in the structure (circled in red).

Figure S5. Comparison between SARMs extraction performed in EtOH (blue) vs DMSO (red). Results are reported as mg of SARM.

Figure S6. Overlapped 1H- NMR spectra obtained by the pulse programs: zg (blue), zgpr (red), noesygppr1d (green), cpmgpr1d (purple). The SARMs spectra are coded as follows: Andarine (panel A), Cardarine (panel B), Ligandrol (panel C), Ostarine (panel D), S-23 (panel E).

Figure S7. qNMR linearity for ¹⁹F-zgig30 (blue profile), ¹H-zg (orange profile) and ¹H-zgpreq (green profile) per SARM. The linear regression equation and R² are reported for each NMR experiment.

Figure S8. Trend of the residuals of qNMR linearity for ¹⁹F zgig30 (blue profile), ¹H zg (orange profile) and ¹H zgpreq (green profile) per SARM. All residuals are within $\pm 2\sigma$

¹⁹ F-zgig30			
Pulse angle	30°	NS	24
Pulse strength	15 dB	Size of FID	128 k
Pulse length	4 μs	Size of real spectrum	512 k
Measurement Temperature	298 K	Line broadening	0.3 Hz
Pre-acquisition delay	6.50 μs	Expt	3.75 min
Acquisition time	1.2 s		
Relaxation delay d1	10 s		
O1P	-65.0 ppm		
¹ H-zg			
Pulse angle	90°	NS	24
Pulse strength	12 dB	Size of FID	64 k
Pulse length	12 μs	Size of real spectrum	512 k
Measurement Temperature	298 K	Line broadening	0.3 Hz
Pre-acquisition delay	6.50 μs	Expt	19.1 min
Acquisition time	2.8 s		
Relaxation delay (d1)	45 s		
O1P	2.5 ppm		
¹ H-zgpreq			
Pulse angle	90°	NS	24
Pulse strength	12 dB	Size of FID	64 k
Pulse length	12 µs	Size of real spectrum	512 k
Measurement Temperature	298 K	Line broadening	0.3 Hz
Preacquisition delay	6.50 μs	PLW[9]	6.8e-05 W
Acquisition time	2.8 s	Expt	19.5 min
Relaxation delay (d9)	45 s		
Solvent suppression delay (d1)	1 s		
O1P	-65.0 ppm		

Table S1. Acquisition and processing parameters of ¹⁹F- and ¹H-qNMR analytical methods

AI	MF ^a	$m/z exp^{b}$	m/z theo ^b	Дррт	RT _{Sample}	RT _{STD}	MS/MS ^c	
		, r					<i>m/z</i> exp ^b	Rel. Intens. (%)
Andarine	$C_{19}H_{18}F_3N_3O_6$	442.1226	442.1221	1.1	6.66	6.64	208.097	100.0
							190.086	42.1
							108.045	29.0
							166.086	18.8
Cardarine	$C_{21}H_{18}F_3NO_3S_2$	454.0762	454.0753	2.0	10.46	10.33	454.075	100.0
							257.048	47.0
Ligandrol	$C_{14}H_{12}F_6N_2O$	339.0930	339.0927	0.9	8.37	8.34	339.092	100.0
-							199.048	16.8
Ostarine	C ₁₉ H ₁₄ F ₃ N ₃ O ₃	390.1062	390.1060	0.5	7.66	7.67	370.099	100
							120.044	33.9
							251.061	29.1
							271.069	14.5
							193.021	17.3
							187.046	10.9
S-23	C ₁₈ H ₁₃ ClF ₄ N ₂ O ₃	417.0620	417.0624	-0.9	9.23	9.16	187.045	100.0
							185.016	38.9
							203.026	15.5
							213.023	14.6
							188.050	7.4

Table S2. Summary of Mass Spectrometry results

a MF stands for Molecular Formula. All SARMs were detected as protonated species.

b m/z_{exp} and m/z_{theo} stand for experimental and theoretical m/z ratio, respectively. c MS/MS experiments were performed with a collision energy = 20V

Dosed SARM (mg/cps)	#1	#2	#3	#4	#5	#6	Mean	Std Dev	RSD
Andarine	19.2	19.1	19.0	19.2	19.1	19.2	19.1	0.05	0.28
Cardarine	7.5	7.5	7.5	7.6	7.6	7.6	7.5	0.05	0.70
Ligandrol	8.8	8.7	8.9	8.8	8.9	8.8	8.8	0.06	0.68
Ostarine	13.1	13.2	13.1	13.2	13.0	13.1	13.1	0.04	0.29
S-23	9.4	9.4	9.2	9.3	9.4	9.3	9.3	0.06	0.61

Table S3. Repeatability obtained by six consecutive measurements of each SARM by ¹⁹F-NMR. Results are expressed as mg/capsule. The RSD acceptance criteria was 1.5%.

Table S4. Intermediate precision of ¹⁹F-qNMR. Each sample content is reported as mg/cps. The results were obtained from integrations of the same samples performed by three different operators. The RSD is within 3.0% for all the experiments.

	Operator 1	SD	Operator 2	SD	Operator 3	SD	SD total	Mean	RSD%
Andarine	20.1	0.33	19.7	0.3	20.2	0.1	0.2	20.0	1.0
Cardarine	7.8	0.03	7.8	0.1	8.1	0.2	0.1	8.0	1.7
Ligandrol	8.6	0.18	8.3	0.3	8.9	0.2	0.2	8.6	2.7
Ostarine	13.5	0.06	13.7	0.2	13.5	0.2	0.1	13.6	0.7
S-23	9.3	0.10	9.1	0.1	9.2	0.1	0.1	9.2	0.8

SADM	Sample Weight			
SARM	Sample weight	¹⁹ F-zgig30	¹ H-zg	¹ H-zgpreq
Andarine	67%, 100%, 167%	0.5	1.4	1.6
Cardarine	50%, 100%, 167%	2.9	3.8	0.9
Ligandrol	65%, 100%, 135%	1.6	0.5	2.2
Ostarine	77%, 100%, 180%	1.5	0.4	0.4
S-23	51%, 100%, 206%	2.7	3.5	3.2

Table S5. Precision (RSD) of the results obtained on three samples for each NMR experiment.The % is referred to the intermediate weight. All the weights are within the linearity range.

Table S6. Linear and Multiple Regression and Correlation of the pulse programs ¹⁹F-zgig30, ¹H-zg, ¹H-zgpreq.

Pulse program	Linearity regression	Andarine	Cardarine	Ligandrol	Ostarine	S-23
	R ²	0.998	0.989	0.996	0.996	0.978
	Slope	0.038	0.016	0.016	0.035	0.019
¹⁹ 5	Intercept	0.088	0.021	-0.014	-0.299	-0.074
	Standard Error	0.085	0.160	0.110	0.132	0.307
	Residual sum square	0.022	0.077	0.036	0.052	0.283
	F	1780.253	296.287	765.699	745.505	134.497
	R ²	0.999	0.989	0.998	0.995	0.981
	Slope	0.038	0.0156	0.016	0.034	0.0181
14 - 7	Intercept	0.052	0.0221	0.006	-0.102	-0.043
-n-2g	Standard Error	0.058	0.169	0.074	0.147	0.282
	Residual sum square	0.010	0.0859	0.017	0.065	0.239
	F	3938.362	264.121	1735.157	563.260	150.290
	R ²	0.999	0.989	0.999	0.996	0.978
	Slope	0.039	0.016	0.016	0.034	0.018
	Intercept	0.015	0.022	0.018	-0.100	-0.013
H-28hied	Standard Error	0.025	0.169	0.054	0.130	0.295
	Residual sum square	0.002	0.086	0.009	0.0510	0.262
	F	21878.430	264.121	3277.896	717.001	135.010
	R ^m	0.999	0.994	0.999	0.998	0.999
Multiple Regression on	Standard Error	0,053	0.178	0.077	0.128	0.290
pulse programs	F	4633,85	237.97	1589.66	757.87	924.99
	F significance	0.000	0.000	0.000	0.000	0.001
Comme la Maria	¹⁹ F-zgig30 - ¹ H-zg	0.999	0.999	0.999	0.999	0.999
Correlation	¹⁹ F-zgig30 - ¹ H-zgpreq	0.999	0.999	0.999	0.999	0.999
	¹ H-zg - ¹ H-zgpreq	0.999	1	0.999	0.999	0.999

		Andarine	Cardarine	Ligandrol	Ostarine	S-23
Pulse program	C (mg/ml)	1.69	1.70	1.69	2.67	2.06
	NS	16	16	16	16	16
	RG	101	101	101	101	101
¹⁹ F-zgig30	S/N	481	345	191	140	365
	LoD (mg/ml)	0.01	0.01	0.03	0.06	0.02
	LoQ (mg/ml)	0.03	0.05	0.09	0.19	0.06
	NS	24	24	24	24	24
	RG	1.94	1.67	1.94	1.74	1.94
¹ H-zg	S/N	453	69	91	140	197
	LoD (mg/ml)	0.01	0.07	0.05	0.06	0.03
	LoQ (mg/ml)	0.04	0.24	0.18	0.19	0.10
	NS	24	24	24	24	24
	RG	17.37	11.54	22.35	10.3	8.92
¹ H-zgpreq	S/N	599	135	219	172	340
	LoD (mg/ml)	0.01	0.04	0.02	0.05	0.02
	LoQ (mg/ml)	0.03	0.12	0.08	0.15	0.06

Table S6. LOD and LOQ per SARM referred to each pulse program.

	-	¹⁹ F-zgig30						
	-	Ostar	ine	Ligandrol				
Parameter		Dosed (mg/cps)	Recovery (%)	Dosed (mg/cps)	Recovery (%)			
	-50 ppm	13.6	99.8	8.6	96.8			
O1P	-65 ppm	13.6	100.0	8.8	100.0			
	-80 ppm	13.7	100.2	8.9	100.8			
	11 µs	13.6	99.8	9.0	101.8			
p1	12 µs	13.6	100.0	8.8	100.0			
	13 µs	13.6	99.5	8.5	96.3			
PCPD2	60 µs	13.7	100.5	8.5	96.3			
	70 µs	13.6	100.0	8.8	100.0			
	80 µs	13.6	100.0	8.7	97.9			

TableS7. Robustness: acquisition parameters and results for pulse programs: ¹⁹F-zgig30 (upper section), ¹H-zg (intermediate section) and ¹H-zgpreq (lower section). Recovery is reported as % in respect to the results obtained by the reference experiment (reported in bold).

	_	¹ H-zg						
		Osta	rine	Ligandrol				
Parameter		Dosed (mg)	Recovery (%)	Dosed (mg)	Recovery (%)			
	2.4 ppm	13.6	100.0	9.0	101.9			
O1P	2.5 ppm	13.6	100.0	8.8	100.0			
	2.6 ppm	13.6	99.9	9.1	102.8			
	9 μs	13.6	100.0	9.1	102.6			
p1	10 µs	13.6	100.0	8.8	100.0			
	11 µs	13.5	99.3	9.3	104.6			

	_	¹ H-zgpreq						
		Osta	rine	Ligandrol				
Para	meter	Dosed (mg)	Recovery (%)	Dosed (mg)	Recovery (%)			
	0.5 s	13.8	101.5	9.1	103.3			
d1	1 s	13.6	100.0	8.8	100.0			
	1.5 s	13.6	99.5	9.1	103.0			
	9 μs	13.5	99.3	9.0	102.0			
p1	10 µs	13.6	100.0	8.8	100.0			
	11 µs	13.5	99.2	9.0	101.3			