Electronic Supplementary Material

An efficient ratiometric fluorescence and colorimetry dual-mode probe

for convenient determination of nitrite in real samples and E. coli

Yujie Wen^{a,b}, Cong Tang^b, Qing Shen^b, Shuqing Dong^a, Yaya Wang^{a,*}, Yunchun Li^a, Shijun Shao^{a,*}

^a CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, PR China

*Corresponding Author: Shijun Shao

Tel: +86-931-4968209

Fax: +86-931-4968209

Email: <u>sjshao@licp.cas.cn</u>

Table of Contents

1. Fluorescent probes for the detection of NO_2^-	.2
2. Synthesis procedures	.3
3. HRMS and NMR spectra	.4
4. Validation of the reaction mechanism	.8
5. Optimization of response conditions	.9
6. Specificity of TMN-NH ₂ 1	.0
7. Detection of NO ₂ ⁻ in real samples1	1

1. Fluorescent probes for the detection of $\mathbf{NO_2^-}$

reaction mechanism Diazotization	Probes	Excitation/ Emission wavelength /nm 580/620	Stokes shift /nm 40	reaction temperature / °C 25	response time / min 8	Signal transduction mode "turn-off"	References Spectrochim. Acta A., 2022, 282, 121692
of amines	F ₃ C ^N NH ₂	465/580	115	25	40	"turn-off"	Microchem. J., 2021, 169, 106342
Amino		-/463 365/530	- 165	-	<58	ratiometric	Adv. Sci., 2020, 7, 2002991.
diazotization followed by	NH ₂ N Me CN	285/400 470/555	115 85	room temperature	1	ratiometric	Anal. Chem., 2014, 87, 1274-1280
azo coupling with activated		355/440	85	room temperature	7	"turn-on"	Anal. Chim. Acta, 2023, 1268, 341403
aromatic rings		567/656	89	room temperature	7	"turn-on"	Food Chem., 2021, 341, 128254
	TZ TZ	285/350	65	-	10	"turn-off"	Microchem. J., 1999, 62, 371-376
Amino		346/403	57	in boiling water bath	20	"turn-off"	Spectrochim. Acta A. , 2007, 66, 586- 589
followed by	H ₂ N CH ₃	325/380	55	in boiling water bath	70	-	<i>Chromatographia</i> 1993, 36 , 57-60.
hydrolysis to	NH2 N ← N HN ← N └ NH H2N ← N ← NH2 w-g-C3N4	340/435	95	room temperature	10	"turn-off"	New J. Chem., 2017, 41, 7171- 7176
пушбхуг	NC CN	400/597 400/663	197 263	room temperature	10	ratiometric	This work

Table S1. Comparison of fluorescent probes for the detection of NO_2^- .

2. Synthesis procedures

Scheme S1. Synthetic schem of fluorophore TMN-OH and probe TMN-NH₂

TMN (2-(3,5,5-trimethylcyclohex-2-en-1-ylidene)malononitrile) and TMN-NO₂ ((E)-2-(3-(4-nitrostyryl)-5,5-dimethylcyclohex-2-en-1-ylidene)malononitrile) were prepared as described in the literature [1]

Synthesis of TMN-NH₂ ((*E*)-2-(3-(4-aminostyryl)-5,5-dimethylcyclohex-2-en-1ylidene)malononitrile): TMN-NO₂ (802 mg, 2.5 mmol) and SnCl₂·2H₂O (565 mg, 2.5 mmol) were mixed in 30 mL ethyl acetate, then hydrochloric acid (0.5 mL) was slowly added to the above solution. The mixture was refluxed at 80 °C for 8 h until the reaction was completed. The mixture was adjusted pH to neutral with 15% sodium hydroxide, and then extracted with dichloromethane. The organic phase was dried over Na₂SO₄, filtered, concentrated in vacuo and the crude product was purified by silica column chromatography using petroleum ether/dichloromethane (5:1, v/v) as eluent to afford **TMN-NH₂** as black-purple powder (586 mg, yield: 81.1%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.41 (d, *J* = 8.5 Hz, 2H), 7.18 (d, *J* = 15.9 Hz, 1H), 7.04 (d, *J* = 15.9 Hz, 1H), 6.70 (s, 1H), 6.56 (d, *J* = 8.5 Hz, 2H), 5.87 (s, 2H), 2.56 (s, 2H), 1.00 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 169.90 (s), 157.61 (d, J = 5.8 Hz, 1H), 151.38 (s), 139.85 (s), 130.18 (s, 2C), 123.42 (d, J = 8.4 Hz), 119.95 (s), 114.58 (s), 113.78 (s, 2C), 72.66 (s), 42.31 (s), 38.21 (s), 31.64 (s), 27.46 (s, 2C). ESI-Mass: calcd for C₁₉H₁₉N₃: 289.1579, found [M–H]⁻ at m/z 288.1523. (Fig. S1 - S3). Synthesis of TMN-OH ((*E*)-2-(3-(4-hydroxystyryl)-5,5- dimethylcyclohex-2-en-1- ylidene)malononitrile): TMN (93 mg, 0.5 mmol), *p*-hydroxybenzal- dehyde (122 mg, 1.0 mmol) and some piperidine were added in 20 mL EtOH. The mixture was refluxed at 80 °C for 6 h with stirring under a nitrogen atmosphere. After being cooled to room temperature, the solvent was removed under reduced pressure and the residue was purified by column chromatography (PE/EA, 3/1, v/v, as eluent) to afford the desire product as a yellow solid (135 mg, yield 93.1%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.97 (s, 1H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 5.0 Hz, 2H), 6.81 – 6.77 (m, 3H), 2.59 (s, 2H), 2.52 (s, 2H), 1.01 (s, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.23 (s), 159.29 (s), 156.67 (s), 138.25 (s), 129.82 (s, 2C), 127.09 (s), 126.22 (s), 121.32 (s), 115.83 (s, 2C), 114.07 (s), 113.26 (s), 74.76 (s), 42.29 (s), 38.18 (s), 31.61 (s), 27.39 (s, 2C). ESI-Mass: calcd for C₁₉H₁₈N₂O: 290.1419, found [M–H]⁻ at m/z 289.1342. (Fig. S4 - S6)

3. HRMS and NMR spectra

Fig. S1 ¹H NMR of TMN-NH₂ in DMSO-d₆

Fig. S3 ¹H NMR of HBTMS in DMSO-*d*₆

Fig. S7 FTIR spectra of TMN-NH₂ and TMN-OH

The infrared spectra were evaluated to verify the structures of TMN-NH₂ and TMN-OH in Fig. S7. In the infrared spectra of TMN-NH₂, the peaks at 1506,1547 and 1595 cm⁻¹ demonstrated a benzene structure. The band at 820 cm⁻¹ was caused by the out-of-plane bending vibrational mode of C-H, indicating that there was 1,4-disubstituted benzene in TMN-NH₂. The absorption band at 2219 cm⁻¹ in TMN-NH₂ correspond to the stretching vibration of C=N bands. The peaks at 3355 and 3450 cm⁻¹ were assigned to the characteristic peak of N-H bond of primary amines. The infrared spectrum of TMN-OH has similar characteristic peaks to that of TMN-NH₂ in the wavenumber range of 3000-400 cm⁻¹, but there was a characteristic peak of the O-H stretching vibration with a broad absorption at 3372 cm⁻¹. The above infrared data further validated the structure of TMN-NH₂ and TMN-OH.

4. Validation of the reaction mechanism

Fig. S8 ESI-HRMS analysis of the reaction solution of probe **TMN-NH**₂ (10 μ M) with NO₂⁻ (20 μ M) in positive ion mode (a) and in negative ion mode (b).

Fig. S9 HPLC analysis chromatograms. (a) TMN-NH₂; (b) TMN-OH (c) the mixture of TMN-NH₂ and TMN-OH; (d) and (e) were the reaction system of 40 μ M probe TMN-NH₂ with 80 μ M NO₂⁻ for 5 min and 10 min, respectively; Chromatographic column: ECHWAY JADE-PAK C18 II (4.6×250 mm, 5 μ m); Mobile phase: CH₃OH-H₂O, 70:30 (v/v); Detection: UV-vis detector (400 nm); Flow rate: 1 mL/min; 20 °C; Injection volume: 20 μ L. Chromatographic retention time: TMN-NH₂ 13.6 min, TMN-OH 15.2 min.

5. Optimization of response conditions

Fig. S10 The effect of various organic solvent on the I_{597}/I_{663} of TMN-NH₂ in the absence and presence of NO₂⁻ (20 μ M). In organic solvent /H₂O solution (ν/ν , 3:7, pH 1.0), $\lambda_{ex} = 400$ nm.

Fig. S11 The influence of the proportion of DMSO on emission intensity. (a) 1% DMSO, (b) 10% DMSO, (c) 20% DMSO, (d) 30% DMSO, (e) 40% DMSO. Black line: **TMN-NH₂** (10 μ M); red line: **TMN-NH₂** (10 μ M) + NO₂⁻ (20 μ M). $\lambda_{ex} = 400$ nm.

6. Specificity of TMN-NH₂

Fig. S12 (a) Absorbance ratio (A_{416}/A_{385}) and (b) fluorescence intensity ratio (I_{597}/I_{663}) of **TMN-NH₂** (10 µM) with various interferents (100 µM) in the absence and presence of NO₂⁻ (10 µM). Tested interferents: (a) blank, (b) KF, (c) CaCl₂, (d) KBr, (e) KI, (f) MgSO₄, (g) Na₂SO₃, (h) Na₂S, (i) Na₂HPO₄, (j) KH₂PO₄, (k) K₂CO₃, (l) NaHCO₃ (m) Zn(NO₃)₂, (n) CH₃COONa, (o) Al(NO₃)₃, (p) FeCl₃, (q) Cu(NO₃)₂, (r) Leu, (s) Phe, (t) Glu, (u) Lys, (v) Thr, (w) Val. In DMSO/H₂O solution (ν/ν , 3:7, pH 1.0), $\lambda_{ex} = 400$ nm.

7. Detection of NO₂⁻ in real samples

Fig. S13 Absorption spectra (a) and the calibration plot (b) of the absorbance intensity versus the concentration of NO_2^- by the Griess assay.

Different volumes (0, 1.5, 15, 30, 45, 60 and 75 μ L) of NO₂⁻ standard solution (1 mM) and 2 mL of water mixed with 2 mL p-aminobenzene sulfonic acid solution (4 mg mL⁻¹) in 10 mL centrifuge tube respectively. After standing for 5 min, 1 mL naphthalene ethylenediamine hydrochloride (2 mg mL⁻¹) solution were added and leave for 15 min. The absorption spectra were obtained in the range from 400 nm to 680 nm. The procedure for NO₂⁻ detection of real sample extracts (0.5 mL) is the same as above.

Table S2 Determination of NO_2^- in water samples using Griess Assay and TMN-NH₂ by ultraviolet spectrophotometry

Sample	Griess Assay	This method	Add	Funded	Recovery	RSD
	(µM)	(µM)	(µM)	(µM)	(%)	(n = 9, %)
natural drinking water	Not detected	Not detected	0.50	0.52	103.3	2.16
			0.75	0.74	98.1	2.37
			1.00	1.06	106.2	1.87
Tap water	Not detected	Not detected	0.50	0.49	97.6	2.86
			0.75	0.70	93.9	3.06
			1.00	0.96	96.3	2.32

Reference:

[1] D. Shen, W. Jin, Y. Bai, Y. Huang, H. Lyu, L. Zeng, M. Wang, Y. Tang, W. Wan, X. Dong, Z.

Gao, H.L. Piao, X. Liu, Y. Liu, Rational Design of Crystallization-Induced-Emission Probes To Detect Amorphous Protein Aggregation in Live Cells, Angew. Chem. Int. Ed. 60 (2021) 16067-16076. https://doi.org/10.1002/anie.202103674.