Simple fluorescence "turn-off" assay for Congo red using

commercial 2-aminophthalic acid

Jiaqi Qian^a, Jie Li^b, Yihan Jiang^a, Chaoyong Liu^b, Jiayao Zhu^a, Liyu Gu^a, Yongming Guo^{*,a,b}

^aSchool of Teacher Education, Nanjing University of Information Science &

Technology, Nanjing 210044, China

^bSchool of Chemistry and Materials Science, Nanjing University of Information

Science & Technology, Nanjing 210044, China

*Corresponding author: E-mail: chinahenangm@163.com,

yongmingguo@nuist.edu.cn (Yongming Guo)

Figure S1. The fluorescence intensity ratio of NH₂-BDC solution at 425 nm under continuous irradiation of 365 nm ultraviolet light (Condition: 40 mM pH 8.0 phosphate buffer; the concentration of NH₂-BDC is 3 mg/L; I₀ is the fluorescence intensity at 425 nm before irradiation, I is the fluorescence intensity at 425 nm after irradiation of 365 nm ultraviolet light at different time; λ_{ex} =330 nm; λ_{em} =425 nm.).

Figure S2. The fluorescence intensity ratio of NH₂-BDC solution at 425 nm under continuous scanning (Condition: 40 mM pH 8.0 phosphate buffer; the concentration of NH₂-BDC is 3 mg/L; I₀ is the fluorescence intensity at 425 nm before irradiation, I is the fluorescence intensity at 425 nm after irradiation of 365 nm ultraviolet light at different time; λ_{ex} =330 nm; λ_{em} =425 nm.).

Figure S3. Quantum yield calculation of NH₂-BDC by using quinine sulfate as the reference. (Conditions: 40 mM pH 8.0 phosphate buffer; the concentration of NH2-BDC is 3 mg/L; λ_{ex} =330 nm.).

Figure S4. The change fluorescence intensity ratio of NH₂-BDC at 425 nm after adding 100 μ M CR at different time (Conditions: 40 mM pH 8.0 phosphate buffer; the concentration of NH₂-BDC is 3 mg/L; I₀ is the fluorescence intensity of NH₂-BDC at 425 nm in the absence of CR, I is the fluorescence intensity of NH₂-BDC at 425 nm in the presence of CR; λ_{ex} =330 nm; λ_{em} =425 nm).

Table S1. Comparison of the sensing performance between NH_2 -BDC and other fluorescent methods for CR analysis.

Probes	Linear range	Limit of detection	Reference
Ca, N, S-carbon	0.2-1.2 μΜ	58 nM	1
quantum dots			
Yellow-green carbon	0.5-50 μg/mL (0.72-71.7 μM),	$0.04 \ \mu g/mL \ (0.057$	2
quantum dots	50-170 $\mu g/mL~(71.7\mathchar`244~\mu M)$	μ M), 0.03 μ g/mL	
		(0.043 µM)	
Rambutan seed waste-	0.5-10 μΜ	0.035 μM	3
derived nitrogen-doped			
carbon quantum dots			
Calix[4]arene derivative	0.040-8.0 µg/mL (0.057-114.8	8.9 ng/mL (1.28	4
	μΜ)	nM)	
NH ₂ -BDC	0.05-50 μΜ	1.72 μM	This work

Figure S5. Fluorescence decay curves of NH₂-DBC in the absence and presence of 100 μ M CR at different time (Conditions: 40 mM pH 8.0 phosphate buffer; the concentration of NH₂-BDC is 3 mg/L; λ_{ex} =341.1 nm; λ_{em} =425 nm).

		2		1	
Samples	Added/µM	Found/µM	Recovery(%)	RSD(%)	
Tap water	25.00	27.00	108.0%	5.98%	_
	40.00	40.26	100.7%	1.08%	
Lake water	25.00	28.31	113.2%	7.16%	
	40.00	36.65	91.6%	3.15%	

Table S2. Detection results of NH₂-BDC for CR in real water samples.

References:

- S. Durrani, J. Zhang, Z. Yang, A.-P. Pang, J. Zeng, S. M. Sayed, A. Khan, Y. Zhang, F.-G. Wu and F. Lin, *Analytica Chimica Acta*, 2022, 1202, 339672.
- L. Liu, Z. Mi, J. Wang, Z. Liu and F. Feng, *Microchemical Journal*, 2021, 168, 106420.
- M. Zulfajri, S. Sudewi, R. Damayanti and G. G. Huang, *RSC Advances*, 2023, 13, 6422-6432.
- Q. Ren, S. Chen, C. Yan and X. Zhu, *Journal of the Iranian Chemical Society*, 2018, 15, 1551-1559.