1

8

Supplementary information

- 2 Comparative analysis of a bulk optode based on a valinomycin ionophore and a
- 3 nano-optode in micelles with Pluronic F-127 for the quantification of potassium in
- 4 aqueous solutions.
- 5 Miguel Villanueva^a, Jaime Vega-Chacón^a, Gino Picasso^a
- 6 Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National
- 7 University of Engineering, Av. Tupac Amaru 210, Lima 25, Peru

9 Figure S1. Experimental scheme for the synthesis of BO and NO.

11 Figure S2. DLS analysis for a) Pluronic F-127 micelles and b) NO micelles.

12

10

13 Figure S3. SEM image of NO micelles.

14

- 15 Figure S4. Tyndall effect in NO solutions. a) With a light source present. b) With a laser
- 16 beam present.

17

Figure S5. Effect of increasing the ionophore valinomycin on the sigmoid model of (a)
BO and (b) NO. Effect of increasing the ion exchanger K-TCPB on the sigmoid model of
(c) BO and (d) NO. Measurements were performed in 20 mM TRIS-HCl buffer pH 7.0.

22

23 Figure S6. Sigmoid curve behavior at pH 5.0-9-0 for (a) BO and (b) NO. Measurements

24 were performed in 0 20 mM TRIS-HCl buffer and 20 mM acetate-acetic buffer.

TRIS Buffer	NaOH	Potassium concentration (M)						
20 mM	10 mM	10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 -2	10 ⁻¹	1.0
\bigcirc	0	\bigcirc	0	0	0			C
000	560							

25

26 Figure S7. Photographs of BO (top) and NO (bottom) for different concentrations of K⁺

27 in 20 mM TRIS buffer at pH 7.0.

28 Table S1. The logarithm of the selectivity coefficients of the optodes for potassium ions

29 based on the valinomycin ionophore against interfering ions.

Log K+ *- j*+

j = interferer	Na+	Li+	Ca2+	Mg2+
Bulk optode	1.79	3.45	2.09	2.20
Nano optode	3.04	3.21	4.01	4.20

30 Table S2. Publications of potassium optical sensors

Methodology	Signal	Selective agent K ⁺	Ion exchanger	Optical agent	Support	Type of sample	Limit of detetion
ISO (this work)	Colorimetric	Valinomycin	К-ТСРВ	CHI	BO: PVC - DOS NO: F- 127	-	BO: 1.0 μM NO: 0.1 mM
CQD ⁷¹	Fluorescence quenching	CQD	-	CQD	Gelatin powder	Human blood serum	0.01 mM
POD ⁷⁰	Colorimetric	Valinomycin	K-TCPB	CHI	Paper substrate	-	0.1 mM
ISO ⁷²	Colorimetric	Valinomycin	DOP	CHI	PVC	Blood plasma	2.3 mM

Polyoctylthiophene nanoptodes ⁶⁶	Fluorescence	Valinomycin	Na-TFPB	CHI	POT - PVA - Dos	Bovine serum album	1.0 -10 ⁻⁶ M
ISO ⁶⁷	Fluorescence	Valinomycin	Na-TFPB	SDI - SDII	Nylon membrane	Aqueous sample solution	1.0 μΜ
POD ⁶⁸	Colorimetric	Valinomycin	BARF	CHI	F-127 - DOS	Biological fluids	2.0 mM
ISO ⁶⁹	Colorimetric	Valinomycin	Na-TFPB	CHI	F-127 - Agarose	-	0 - 2.0 mM
ISO ⁴¹	Fluorescence	Valinomycin	Na-TFPB	SD	Organosilica nanospheres - nylon filter paper	Aqueous sample solution	1.0 µM

31 Method of least-squares for calculated the Ke

32 The equilibrium constant of the valinomycin-potassium ion complex $\binom{K^{I}}{e}$ could be 33 expressed as Equation S1.

$$Log\left(\frac{a_{K^{+}}}{a_{H^{+}}}\right) + Log K_{e}^{KI^{+}} = Log\left(\frac{\alpha}{(1-\alpha)} \frac{[C_{E}] - (1-\alpha)[C_{C}]}{[C_{I}] - [C_{E}] + (1-\alpha)[C_{C}]}\right)$$
34

35 Equation S1

$$Log\left(\frac{a_{K}^{+}}{a_{H}^{+}}\right) = X_{i}$$

$$Log K_{e}^{KI} = C$$
and
$$\frac{\alpha}{(1-\alpha)} \frac{[C_{E}] - (1-\alpha)[C_{C}]}{[C_{I}] - [C_{E}] + (1-\alpha)[C_{C}]} = Y_{I}$$
A simple way to find C is to average the

38 distances between Xi and Yi as an Equation S2.

$$C = \frac{\sum (Y_i - X_i)}{n}$$
Equation S2
40
41
42