Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Supporting information

Sensitive fluorescence assay of chloramphenicol coupled with two-level isothermal amplification using self-powered catalyzed hairpin assembly and entropy driven circuit

Zhengwei Xiong a, d, Cun Wang a, Cheng Liu a, Yue Jiang e, Yiping Li b,*, Wen Yun c,*

^a Chongqing Research Station of Field Scientific Observation for Authentic Traditional Chinese Medicine in the Tree Gorges Reservoir Area, Chongqing University of Education, Chongqing 400067, China.

^b The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, 621000, China.

^c Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China.

^d Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing University of Education, Chongqing 400067, China.

^e Chongqing Nan'an District Ecological Environment Monitoring Station, Chongqing, 401336, China.

Supporting information

Table S1. The sequences of used oligonucleotides in this work

Note	Sequence (5' to 3')		
H1	GACCATGA-AAGT-GCTG-AACAGT-ACTT-GCTTAG-CAGC-		
	ACTTCAGTGAGTTGTCCCACGGTCGGCGAGTCGGTGGTAGA		
Н2	ACTT-GCTTAG-AGTCATGAAAAA-CTAAGC-AAGT-ACTGTT		
Н3	AGTCATGAAAAA-ACTT-GCTTAG-TTTTTCATGACT- CTAAGC-TCATGGTC		
F	CCTACGTCTCCAAG-CCCT-AGTCATGAAAAA		
A	FAM-CCTACGTCTCCAAG		
В	CCCCCCCCCC-CCCT-AGTCATGA		
C	AACAGT-TTTTTCATGACT-AGGG-CTTGGAGACGTAGG- Dabcyl		

Supporting information

Table S2. Comparisons with other aptamer based strategy for CAP detection

Target	Strategy	Linear range	LOD	Ref
CAP	Colorimetry+aptamer (without amplification)	1 – 120 nM	0.451 nM	[1]
CAP	Electrochemistry+aptamer (without amplification)	1.76 – 127 nM	1.76 nM	[2]
CAP	Fluorescence + aptamer (without amplification)	0.1 – 10 nM	98 pM	[3]
CAP	Entropy driven catalytic reaction + Dumbbell hairpin	20 – 4000 pM	6 pM	[4]
CAP	Fluorescence + aptamer + hybridization chain reaction amplification	15.47 pM - 4.641 $\text{nM} (5 \text{ pg} \cdot \text{mL}^{-1} \text{ to}$ $1.5 \text{ ng} \cdot \text{mL}^{-1})$	3.713 pM (1.2 pg·mL ⁻¹)	[5]
CAP	Colorimetry + aptamer + polymeric HRP-antibody amplification	0.031 nM - 309.4 nM (0.01 - 100 ng mL ⁻¹)	9.283 pM (3 pg·mL ⁻¹)	[6]
CAP	Colorimetry + aptamer + catalyzed hairpin assembly + hybridization chain reaction amplification	0.1 fM - 0.01 nM	11.6 aM	[7]
CAP	Fluorescence + aptamer + catalyzed hairpin assembly + Entropy driven catalytic reaction	0.4 - 50 pM	0.1 pM	This method

Reference:

- [1] K. Abnous, N.M. Danesh, M. Ramezani, A.S. Emrani, S.M.J.B. Taghdisi, Bioelectronics, A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol, 78 (2016) 80-86.
- [2] S. Pilehvar, T. Dierckx, R. Blust, T. Breugelmans, K.J.S. De Wael, An electrochemical

Supporting information

- impedimetric aptasensing platform for sensitive and selective detection of small molecules such as chloramphenicol, 14 (2014) 12059-12069.
- [3] M. Alibolandi, F. Hadizadeh, F. Vajhedin, K. Abnous, M. Ramezani, Design and fabrication of an aptasensor for chloramphenical based on energy transfer of CdTe quantum dots to graphene oxide sheet, Materials Science and Engineering: C, 48 (2015) 611-619.
- [4] L. Wu, Y. Hu, Y. Li, L. Lou, W. Yun, H. Chen, L.J.S.A.P.A.M. Yang, B. Spectroscopy, An entropy driven catalytic reaction powered DNA motor for simultaneous detection of ochratoxin A and chloramphenicol in food, 264 (2022) 120264.
- [5] Y. Li, L. Wang, L. Zhao, M. Li, Y.J.F.C. Wen, An fluorescence resonance energy transfer sensing platform based on signal amplification strategy of hybridization chain reaction and triplex DNA for the detection of Chloramphenicol in milk, 357 (2021) 129769.
- [6] H. Gao, D. Pan, N. Gan, J. Cao, Y. Sun, Z. Wu, X.J.M.A. Zeng, An aptamer-based colorimetric assay for chloramphenical using a polymeric HRP-antibody conjugate for signal amplification, 182 (2015) 2551-2559.
- [7] Y. Yin, Y. Yao, Y. Qin, C. Liu, M. Zhang, H.-W. Shi, Y. Yuan, E. Adams, W. Shen, S. Tang, Enhanced colorimetric strategy: Aptamer-triggered assembly of Ni-Fe layered double oxide/DNA networks for ultrasensitive detection of chloramphenicol, Journal of Food Composition and Analysis, 123 (2023) 105513.