Supporting Information

One-step electrodeposition of MWCNTs-Cu MOFs film for the

ratiometric electrochemical analysis of glyphosate

Fan Zhao*, Dongqing Guo, Jingyue Lan and Yunxi Liu

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China

* Corresponding author. E-mail addresses: fzhao@tjnu.edu.cn

Fig. S1. The relationship between value of $\Delta I_{Cu}/I_{MB}$ and reaction time obtained at GC/MWCNTs-Cu MOFs/MB electrode in 0.1 M PBS solution (pH=7.0) containing 40 mM Cl⁻ in the presence of 10 nM GLYP.

Fig. S2. SEM images and the corresponding EDX of (A, D) GCE/MWCNTs-Cu MOFs with the addition of (B, E) Cl⁻ and then adding of (C, F) GLYP.

Fig. S3. (A) DPVs of GC/MWCNTs-Cu MOFs modified electrode in 0.1 M PBS (pH=7.0) containing 40 mM Cl⁻ under different electrodeposition potentials. (B) The impact of deposition potential on the oxidation peak current of I_{Cu} .

Fig. S4. (A) DPVs obtained at GC/MWCNTs-Cu MOFs modified electrode in 0.1 M PBS (pH=7.0) containing 40 mM Cl⁻ under different deposition times. (B) The impact of deposition time on the oxidation peak current of I_{Cu}.

Fig. S5. (A) DPVs of GC/MWCNTs-Cu MOFs/MB electrode in 0.1 M PBS (pH=7.0) containing different Cl⁻ concentration of 0 mM, 20 mM, 40 mM, 60 mM, and 80 mM, respectively. (B) The impact of Cl⁻ concentration on the oxidation peak current ratio of I_{Cu}/I_{MB}.

Fig. S6. (A) DPVs of GC/MWCNTs-Cu MOFs/MB electrode in 0.1 M PBS with different pH values. (B) The effect of pH value on the peak current ratio of I_{Cu}/I_{MB} .

Fig. S7. (A) DPV responses of different GC/MWCNTs-Cu MOFs/MB electrodes towards 50 nM GLYP in 0.1 M PBS (pH=7.0) containing 40 mM Cl⁻. (B) Stability test for GC/MWCNTs-Cu MOFs/MB.

Methods	Linear range (mol L^{-1})	LOD (mol L^{-1})	Reference	
		· · · · ·		
Nanoporous copper (NPC)	$3.0 imes 10^{-8} - 6.5 imes 10^{-8}$	$3.0 imes 10^{-9}$	[1]	
Cu-TCPP/AuNPs/CP	$0.2 \times 10^{-6} - 1.2 \times 10^{-4}$	0.3×10^{-7}	[2]	
MIPNs-based electrochemical	$2.5 imes 10^{-6} - 3.5 imes 10^{-4}$	1.9×10^{-6}	[3]	
sensor				
graphite oxide paste electrode	$1.8 \times 10^{-5} - 1.2 \times 10^{-3}$	$1.7 imes10^{-8}$	[4]	
(GrO-PE)				
CuAl–LDH/Gr NC	$2.96 \times 10^{-9} - 1.18 \times 10^{-6}$	1.0×10^{-9}	[5]	
GC/MWCNTs-Cu MOFs/MB	$0.5 \times 10^{-9} - 4.0 \times 10^{-7}$	1.4×10^{-11}	This work	

 Table S1. Comparison of analytical performance of different electrochemical methods for the detection of GLYP.

Method	Derivatization	Sample	Conditions	Linear range	LOD	Reference
	reagent	preparation				
LC-ESI-MS/MS	FMOC-Cl	SPE	2.0×50 mm I.D., Discovery®C18	25-5000 ng/L	5 ng/g	[6]
			MP: 5 mM HAc/NH4Ac (pH 4.8)-ACN			
			Flowrate: 1.0 mL/min			
LC- ESI-MS/MS	FMOC-Cl	SPE	2.0×30 mm I.D., XBridgeTM Premier BEH C18	0.5-500 ng/L	0.2 ng/L	[7]
			MP: 5mM water buffered ammonium acetate (pH 9.0) -MeOH			
			Flowrate: 0.2 mL/min			
HPLC-FL	FMOC-Cl	_	4.6×150 mm I.D., ZORBAX SB-C18	0.8-10 μg/L	0.24 μg/L	[8]
			MP: 5mmol/L ammonium acetate, pH 9.0 and MeOH	10-160 μg/L		
			Flowrate: 1.0 mL/min	160-6000 μg/L		
LC-MS/MS	_	SPE	3.0×100 mm I.D., Acclaim [™] Trinity Q1	10-1000 ng/mL	19 ng/g	[9]
			MP: 100 % water (A) and 100 % ammoniumformate/formic acid			
			buffer (B)			
			Flowrate: 0.7 mL/min			
UHPLC-MS/MS	FMOC-Cl	QuEChERS	2.1×150 mm I.D., AccucoreTM aQ C18 Thermo Scientific	0.025-10 μg/L	0.025 μg/L	[10]
			MP: 95 % H ₂ O, 5 % MeOH, 5 mM NH ₄ HCO ₂ , 0.1 % CH ₂ O ₂			
			(A); 95 % MeOH, 5 % H ₂ O, 5 mM NH ₄ HCO ₂ , 0.1 % CH ₂ O ₂ (B)			
			Flowrate: 0.3 mL/min			

Table S2. Standard methods for GLYP analysis.

Reference

- M. Regiart, A. Kumar, J. M. Goncalves, G. J. Silva, J. C. Masini, L. Angnes and M. Bertotti, *ChemElectroChem*, 2020, 7, 1558-1566.
- [2] R. Jiang, Y.-H. Pang, Q.-Y. Yang, C.-Q. Wan and X.-F. Shen, *Sensor. Actuat. B-Chem.*, 2022, 358, 131492-131501.
- [3] S. C. Ding, Z. Y. Lyu, S. Q. Li, X. F. Ruan, M. G. Fei, Y. Zhou, X. H. Niu, W. L. Zhu, D. Du and Y. H. Lin, *Biosens. Bioelectron.*, 2021, **191**, 113434-113442.
- [4] J. S. Santos, M. S. Pontes, E. F. Santiago, A. R. Fiorucci and G. J. Arruda, *Sci. Total Environ.*, 2020, 749, 142385-142394.
- [5] C. Zhang, X. Liang, Y. Lu, H. Li and X. Xu, Sensors, 2020, 20, 4145-4160.
- [6] M. Ibáñez, Ó. J. Pozo, J. V. Sancho, F. J. López and F. Hernández, J. Chromatogr. A, 2005, 1081, 145-155.
- [7] I. Hanke, H. Singer and J. Hollender, Anal. Bioanal. Chem., 2008, 391, 2265-2276.
- [8] S. Wang, B. Liu, D. Yuan and J. Ma, *Talanta*, 2016, 161, 700-706.
- [9] N. Chamkasem, J. Agric. Food Chem., 2017, 65, 7535-7541.
- [10] C. Campanale, M. Triozzi, C. Massarelli and V. F. Uricchio, J. Chromatogr. A, 2022, 1672, 463028-463039.