SUPPLEMENTARY INFORMATION

Amino Acid-Stabilized Luminescent Gold Clusters for Sensing Pterin and its Analogues

Tomash S. Sych^{*}, Nikolai V. Shekhovtsov, Andrey A. Buglak and Alexei I. Kononov

St Petersburg University, Saint-Petersburg 199034, Russia

^{*}E-mail: <u>t.sych@spbu.ru</u>

<u>Calculation formula for relative QY:</u> $\varphi = \varphi_s \frac{FA_s n^2}{F_s A n_s^2}$, where φ – QY of the sample, φ_s – QY of the reference, F – integral of the sample emission, F_s – integral of the reference emission, A – absorption of the sample, A_s – absorption of the reference, n – refractive index of the sample, n_s – refractive index of the reference.

LOD calculation procedure

The values of limit of detection (LOD) can be obtained using the following formula (1):

$$LOD = \frac{3.3\sigma}{S}$$
(1)

, where σ is the residual standard deviation (also known as "root MSE" – root mean square of the error), and *S* is the slope of the calibration curve. In our case, we used the slope of the calibration curve in the linear range. We calculated σ as the root-mean-square approximation error obtained using the formula (2):

$$\sigma = \sqrt{\chi^2_{red.}} \qquad (2)$$

In the formula (2), $\chi^2_{red.}$ means the reduced "chi-squared":

$$\chi^2_{red.} = \frac{\chi^2}{\nu} = \frac{\chi^2}{N-p} \qquad (3)$$

In the formula (3), χ^2 is the residual sum of squares (RSS), v are degrees of freedom (which is equal to N - p), N is the number of data points, p is the number of fit function parameters β . The value of RSS used above can be calculated using the formula (4):

$$\chi^{2} = \sum_{i=1}^{N} w_{i} \left(y_{i} - f(x_{i}, \beta_{1}, \dots, \beta_{p}) \right)^{2}$$
(4)

This value is minimized during the fit to find the optimal fit function parameters θ .

Figure S1. 2D contour plots for Trp-Au NCs in acidic (top) and alkali (bottom) conditions. In present work, Trp-Au NCs were used at pH 12 (bottom left).

Figure S2. Relative emission intensity at 410 nm of DOPA-Au NCs versus solvent pH. The [Au]:[DOPA] ratio is 5.

Figure S3. Relative emission intensity at 460 nm of Trp-Au NCs versus solvent pH. The [Au]:[DOPA] ratio is 2.

Figure S4. Relative emission intensity at 405 nm of Tyr-Au NCs (a) versus solvent pH. The [Au]:[Tyr] ratio is 0.33.

Figure S5. Relative emission intensity at 410 nm of Tyr-Au NCs (b) versus solvent pH. The [Au]:[Tyr] ratio is 0.5.

Figure S6. 2D contour plots for Phe-Au NCs in acidic (top) and alkali (bottom) conditions

Figure S7. Relative emission intensity at 350 nm of Phe-Au NCs under different pH values.

Figure S8. Relative emission intensity at 410 nm of DOPA-Au NCs versus [Au]:[DOPA] ratio. The solvent pH is 11.

Figure S9. Relative emission intensity at 460 nm of Trp-Au NCs versus [Au]:[Trp] ratio. The solvent pH is 1.

Figure S10. Relative emission intensity at 410 nm of Tyr-Au NCs (b) versus [Au]:[Tyr] ratio. The solvent pH is 7.

Figure S11. Relative emission intensity at 405 nm of Tyr-Au NCs (a) versus [Au]:[Tyr] ratio. The solvent pH is 10.5.

Figure S12. Fluorescence decay of DOPA-Au NCs (λ_{ex} 340 nm, λ_{em} 415 nm). Fit: 0.88exp(-t/1.2) + 0.12exp(-t/6.0).

Figure S13. Fluorescence decay of Trp-Au NCs (λ_{ex} 340 nm, λ_{em} 460 nm). Fit: 0.85exp(-t/1.7) + 0.15exp(-t/6.8).

Figure S14. 2D contour plots for DOPA-Au NCs in various pH conditions.

Figure S15. Fluorescence decay of Tyr-Au NCs (a) (λ_{ex} 340 nm, λ_{em} 405 nm).

Figure S16. Fluorescence decay of Tyr-Au NCs (b) (λ_{ex} 266 nm, λ_{em} 410 nm). Fit: 0.87exp(-t/1.3) + 0.13exp(-t/4.7).

Figure S17. Left: C(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (b) (bottom). Right: C(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (a) (bottom).

Figure S18. Left: O(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (b) (bottom). Right: O(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (a) (bottom).

Figure S19. Left: N(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (b) (bottom). Right: N(1s) XPS spectra of Tyr (top) and Tyr-Au NCs (a) (bottom).

Figure S20. Decomposition of the emission spectrum of Phe-Au NCs into three Gauss peaks.

Figure S21. Fluorescence decay of Phe-Au NCs (λ_{ex} 266 nm, λ_{em} 350 nm). Fit: 0.55exp(-t/0.7) + 0.45exp(-t/2.8).

Figure S22. C(1s) XPS spectra of Phe (top) and Phe-Au NCs (bottom).

Figure S23. O(1s) XPS spectra of Phe (top) and Phe-Au NCs (bottom).

Figure S24. N(1s) XPS spectra of Phe (top) and Phe-Au NCs (bottom).

Figure S25. Absorption (top) and emission (bottom) spectra of Ptr (left), Lep (in center) and FA (right).

Figure S26. Absorption (top) and emission (bottom) spectra of Phe-Au NCs in the presence of Ptr (left) and Lep (right).

Figure S27. Emission spectra of BSA-Au NCs in the presence of different Ptr concentrations. BSA-Au NCs synthesis protocol: [BSA] = 1 mg/ml; initial pH 12.5; [Au]:[BSA] = 140:1.

Figure S28. Emission spectra of Phe-Au NCs (excitation at 290 nm) in the presence of FA.

Figure S29. Emission spectra of DOPA-Au NCs (excitation at 315 nm) in the presence of Lep.

Figure S30. Emission spectra of Tyr-Au NCs (a) (excitation at 315 nm) in the presence of guanine.

Figure S31. Emission spectra of Tyr-Au NCs (b) (excitation at 285 nm) in the presence of Ptr.

Figure S32. Emission spectra of Trp-Au NCs (excitation at 330 nm) in the presence of FA.

Figure S33. Emission spectra of Trp-Au NCs (excitation at 330 nm) in serum in the presence of FA.

Figure S34. Emission spectra of Tyr-Au NCs (b) (excitation at 285 nm) in serum in the presence of Ptr.

DOPA-AuNCs					[A	u]:[DOP/	A]			
Intensity at 410 nm		10.0	6.7	5.0	4.0	3.3	2.5	2.0	1.0	0.5
	13.1			0.19						
	12.0			0.24	0.21	0.10				
	11.5		0.19	0.58	0.67	0.27				
	11.0	0.08	0.26	1.00	0.70	0.26	0.12	0.11		
Solvent pH	10.5		0.33	0.66	0.37	0.23				
	10.0		0.26	0.37	0.25					
	9.6		0.26	0.38	0.25					
	8.9		0.26	0.39	0.25					
	8.5	0.16	0.27	0.35	0.34	0.20				
	7.0	0.17		0.38		0.21	0.14			
	5.0	0.16		0.37		0.19	0.14	0.14	0.06	0.04
	4.0	0.13		0.38		0.19	0.15	0.13	0.06	0.04
	3.0	0.08		0.39		0.22	0.15			
	2.0	0.07		0.58		0.25	0.13	0.06	0.05	0.03
	1.0	0.03		0.15		0.05	0.05	0.06	0.05	0.04

Table S1. Table of dependence of normalized emission intensity at 410 nm of DOPA-Au NCs on the synthesis parameters: [Au]:[DOPA] ratio and solvent pH.

Table S2. Table of dependence of normalized emission intensity at 460 nm of Trp-Au NCs on the synthesis parameters: [Au]:[Trp] ratio and solvent pH.

Trp-Au NCs		[Au]:[Trp]									
Intensity at 460 nm		15	5	3.3	2.9	2.5	2.2	2.0	1.0	0.50	0.33
-	7.0							0.40	0.22	0.12	0.07
p F	5.0							0.40	0.21	0.11	0.06
ent	4.0							0.41	0.23	0.13	0.07
olv	2.0	0.12	0.34	0.32	0.40	0.45	0.46	0.51	0.42	0.38	0.25
S	1.0	0.05	0.32	0.49	0.87	0.99	1.00	0.94	0.53	0.25	0.16

Table S3. Normalized emission intensity at 350 nm of Phe-Au NCs in dependence of [Phe]:[Au] ratio and dilution rate of obtained complexes after synthesis.

Phe-Au	[Phe]:[Au] ratio				
Intensity a	t 350 nm	0	2	5	10
u	-	0,061	-	-	0,404
lutic rate	5	-	-	1,000	0,948
dil	50	-	0,281	0,274	0,165

AA	[Au]/[AA]	Solvent pH*	Sensor for	$\lambda_{ex}/\lambda_{em}$, nm	QY, %	Reference
Tyr	1.30	5.0	Al ⁺³ , Fe ions	383/498	1.7	https://doi.org/10.1039 /C4AY01137F
	0.55	2.0	tyrosinase	385/470	2.5	https://doi.org/10.1016 /j.aca.2014.05.050
	0.50	7.0	guanine	285/405	7	This work
	0.33	10.5	pterin	315/405	26	This work
DOPA	5.0	4.0-10.3	ascorbic acid (through Fe ions)	360/545		https://doi.org/10.1016 /j.snb.2017.02.151
	2.6	4.5	Fe ions	360/525	1.7	https://doi.org/10.1021 /ac203362g
	1.8	4.0	hROS	360/464		https://doi.org/10.1021 /acs.analchem.0c01147
	5.0	11.0	leucopterin	315/415	1.0	This work
Trp	0.37	5.0	Fe ions	305/450	2.9	https://doi.org/10.1016 /j.snb.2016.11.052
	2.20	1.0	Folic acid	330/460	0.7	This work
Phe	0.50	6.0	ľ	320/390		https://doi.org/10.1038 /s41598-022-05155-5
	0.10	13.0	pterin leucopterin folic acid	290/350	4.3	This work

Table S4. Synthesis conditions and photopysical properties of different AA-Au NCs.

|--|

Analyte	Method/Fluorescent sensor	LOD, μM	Reference	Year
Guanine	electrochemistry	0.06	https://doi.org/10.1007/s00604-021- 04926-7	2021
	carbon dots	0.0064	https://doi.org/10.1016/j.aca.2021.3 38977	2021
	NFR-Ag NCs on nanosheets	1.85	https://doi.org/10.1016/j.talanta.20 18.09.097	2018
	Tyr-Au NCs	0.7	This work	
Leucopterin	liquid chromatography with mass spectrometry	0.0072	https://doi.org/10.1016/j.jchromb.2 013.05.004	2013
	capillary electrophoresis	0.56	https://doi.org/10.1016/j.chroma.20 14.02.019	2014
	DOPA-Au NCs	2.8	This work	
	Phe-Au NCs	9	This work	
	liquid chromatography with mass spectrometry	0.0006	https://doi.org/10.4155/bio.12.131	2012
Pterin	liquid chromatography	0.018	https://doi.org/10.1016/j.jpba.2013. 12.012	2013
	capillary electrophoresis	0.1	https://doi.org/10.3390/molecules2 4061166	2019
	Tyr-Au NCs	4.4	This work	
	Phe-Au NCs	11	This work	

	flow injection analysis	0.068	https://doi.org/10.1002/pca.704	2003
	capillary electrophoresis	0.02	https://doi.org/10.1016/j.chroma.20 05.11.052	2006
	SERS	0.009	https://doi.org/10.1021/nn201606r	2011
	absorbance (reaction inhibition)	0.82	https://doi.org/10.1016/j.saa.2011.0 6.015	2011
	BSA-Au NCs	0.042	https://doi.org/10.1016/j.snb.2014.0 <u>3.075</u>	2014
	BSA-Au NCs with Au NPs	0.065	http://doi.org/10.1007/s00604-014- <u>1442-z</u>	2015
Folic Acid	liquid chromatography with mass spectrometry	0.0006	https://doi.org/10.1016/j.jpha.2015. 05.004	2015
	electrochemistry	0.01	https://doi.org/10.1016/j.bios.2016. 05.095	2016
	carbon dots	0.04	https://doi.org/10.1016/j.snb.2018.0 <u>1.227</u>	2018
	carbon dots	0.38	https://doi.org/10.1016/j.saa.2019.1 <u>17931</u>	2019
	carbon dots	0.28	https://doi.org/10.1007/s00216-020- 02507-w	2020
	ovalbumine-CuNCs	0.18	https://doi.org/10.1016/j.talanta.20 18.11.067	2018
	D-Trp-Au NCs	5.8	https://doi.org/10.1186/s40543-021- 00266-6	2021
	L-Trp-Au NCs	0.2	This work	
	Phe-Au NCs	6	This work	