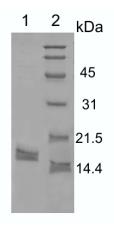
Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Bioluminescent aptamer-based microassay for detection of melanoma inhibitory activity (MIA) protein

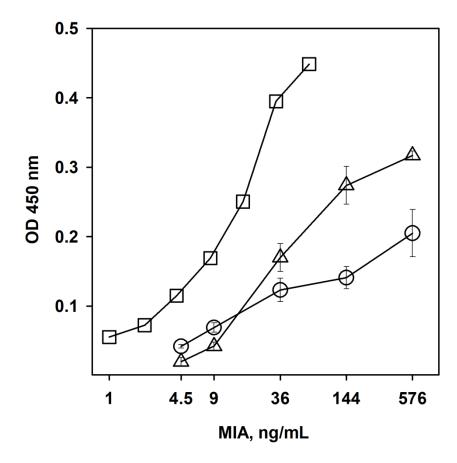

Eugenia E. Bashmakova^a, Alexander N. Kudryavtsev^a, Alexey E. Tupikin^b, Marsel R. Kabilov^b, Aleksey E. Sokolov^{c,d}, Ludmila A. Frank^{a,d}

^aInstitute of Biophysics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia

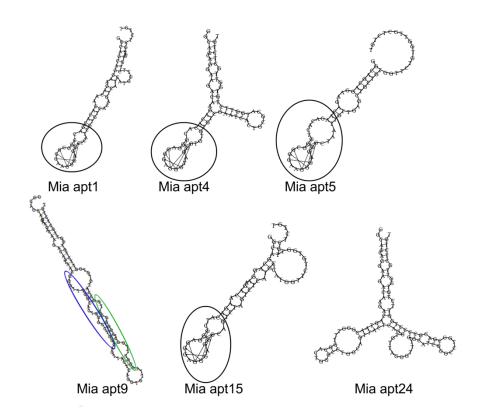
^bInstitute of Chemical Biology and Fundamental Medicine SB RAS, 630090, Novosibirsk, Russia

^cKirensky Institute of Physics, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia

^dSiberian Federal University, 660041, Krasnoyarsk, Russia


Figure S1. 15% SDS-PAGE analysis of His₆-MIA sample. Lanes: 1 – His₆-MIA after chromatography purification; 2 – standard proteins.

S1. ELISA assay of the recombinant MIA proteins


Sandwich-type MIA colorimetric immunoassay based on horseradish peroxidase conjugate was performed using a commercial kit (R&D Systems, USA) according to the manufacturer's instructions. Optical density was measured with a plate colorimeter (Bio-Rad, USA).

The targets used were: (a) recombinant MIA protein obtained in this work; (b) recombinant MIA with biological activity (Novus Biologicals, USA); (c) human MIA standard (R&D Systems, USA). Samples (a) and (b) were diluted in concentrations from 576 to 4.5 ng/mL in standard

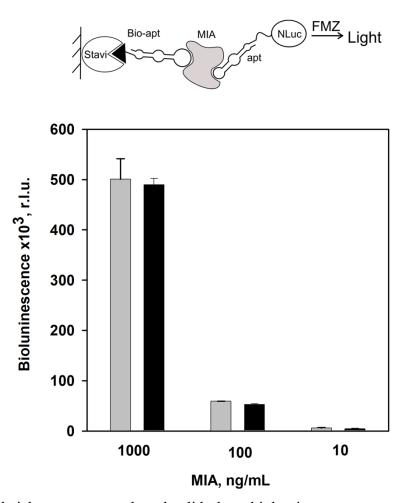
human serum (Vector Best, Russia). Sample (c) was diluted in PBS at concentrations ranging from 66 to 1 ng/mL in accord with the manufacturer's recommendations.

Figure S2. ELISA assay of the recombinant MIA proteins. Human MIA standard was analyzed in duplicate. The triangle denotes MIA obtained in this work, the circle - MIA from Novus Biologicals, the square - human MIA standard (R&D Systems). (n = 3).

Figure S3. Predicted secondary structures of the full-size aptamers (RNAfold web server). Plausible formation route for GQ motifs according to RNAfold web server is shown in black circles and according to QGRS Mapper – in blue and green circles.

Table S1. Aptamers sequences. Constant regions are underlined

Aptamer	Sequence 5'-3'	Length	Frequency	G %;
				GQ motif
				$(+ \text{ or } -)^*$
MIA	<i>GGCAGCAGGAAGACAAGACA</i> CGACGGGGG	80	7968	38.8 (+)
apt1	GAAGGGAGGTCATCGTGTCACAGTCATC			
	A <u>TGGTTCTGTGGTTGCTCTGT</u>			
MIA	<i>GGCAGCAGGAAGACAAGACA</i> CACGGGAGGG	80	1281	40 (+)
apt4	AGGGTAGGGTGTGTGTCGAATCACTGCGC			
1	A <u>TGGTTCTGTGGTTGCTCTGT</u>			
MIA	<i>GGCAGCAGGAAGACAAGACA</i> CTGGGCGGGA	76	1144	40.8 (+)
apt5	AGGGAGGCTAATTGTTGAGCTGCTG <u>TGG</u>			
_	<u>TTCTGTGGTTGCTCTGT</u>			
MIA	<i>GGCAGCAGGAAGACAAGACA</i> GTAACGGGTT	109	704	38.5 (-)
apt9	TGGCACTGGCCTGGCAGTTACTCAGGTG			
	TTAGGGTTTGGCTCGGGGCCTGGCCATGTG			
	<u>TGGTTCTGTGGTTGCTCTGT</u>			
MIA	<i>GGCAGCAGGAAGACAAGACA</i> TCGGGAGGGA	75	374	38.7 (+)
apt15	GGGAGGCAGTCTAGTCTCATGCCA <u>TGGTT</u>			
	<u>CTGTGGTTGCTCTGT</u>			
MIA	<i>GGCAGCAGGAAGACAAGACA</i> GTAACGGGTT	111	310	36.9 (-)
apt24	TGGCACTGGCCTGGCAGTTACTCAGGTG			
	TTAGGGTTTGGCATCGGGCCTGGCGACGC			
	CCC <u>TGGTTCTGTGGTTGCTCTGT</u>			


^{*}The secondary structures of aptamers predicted by VIENNA RNA fold.

S2. Evaluation of the aptamers stability and functionality

Aliquots of 100 μM water solutions of biotinylated aptamer MIAapt4.53 were stored for one year at -20 °C. Prior to the experiment, the aptamer was folded in binding buffer (PBS, 1 mM MgCl₂) by heating for 10 min at 95 °C followed by cooling at 25 °C for 15 min.

Aliquots of the conjugate MIAapt9-NLuc in the binding buffer containing 0.1% bovine serum albumin were stored for four months at -20°C. This conjugate was thawed and used without any processing.

The 100 μ L of biotinylated aptamer MIAapt 4.53 (70 nM in binding buffer) were placed into the plate wells, activated with streptavidin, incubated for 1 h at RT and washed. Then the 100 μ L aliquots of His₆-MIA (10, 100,1000 ng/mL), in standard human blood serum, previously five-fold diluted and containing 0.05% Tween 20 were placed into the wells, incubated for 1 h at RT. After washing, the wells were loaded with 100 μ L of conjugate MIAapt9–NLuc solution (80 pM, binding buffer), incubated for 1 h at RT, then washed. The bioluminescent signal was measured with LB 940 Multimode Reader Mithras (Berthold, Germany) immediately after injection of freshly prepared 100 μ L of furimazine solution in PBS, the signal was integrated for 5 s.

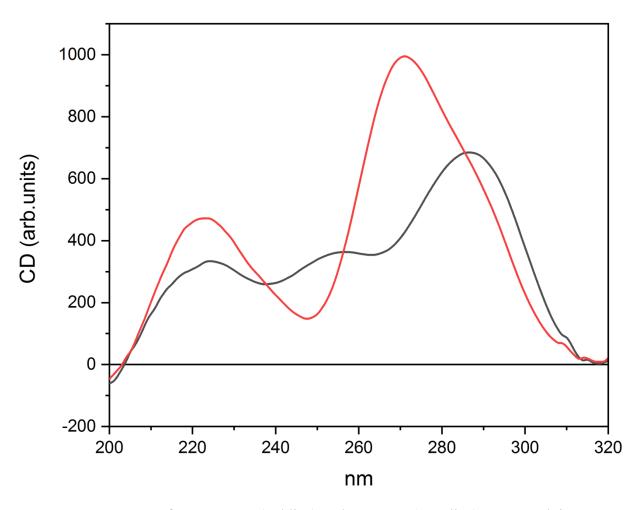


Figure S4. Sandwich-type aptamer-based solid-phase bioluminescent assay of MIA in standard human serum with freshly prepared aptamers (gray bars) and after storage (black bars), (n = 3).

Bio-apt – biotinylated aptamer; FMZ – furimazine. Composition of complexes formed on the surface is given above.

S3 Circular dichroism (CD) spectroscopy

Aptamers MIAapt4.53 and MIAapt9 (3 μM) were refolded by heating to 95 °C for 10 min in PBS, 1 mM MgCl₂ followed by cooling at 25 °C for 15 min. The CD spectra were taken at 20 °C on a SKD-2MUF recording spectrograph (Russia) using a quartz cell of 0.5-cm optical path length. All spectra were recorded in the 200-400 nm wavelength range, with spectral resolution of 3 nm. Each spectrum was acquired as an average of 6 scans.

Figure S5. CD spectra of MIAapt4.53 (red line) and MIAapt9 (gray line), 3 μM each in PBS, 1 mM MgCl₂.