Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2024

SUPPLEMENTARY INFORMATION

Preparation of amphiphilic poly(divinylbenzene-co-N-vinylpyrrolidone)-functionalized polydopamine magnetic nanoadsorbents for enrichment of synthetic cannabinoids in wastewater Xiuchen Li ^{1,3}, Le Jiang ^{1,3}, Bin Di ^{1,3}*, Chi Hu ^{2,3}*

¹ Department of Pharmacy, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China.

² Department of Pharmaceutical Engineering, China Pharmaceutical University, No.24 Tongjiaxiang Road, Nanjing 210009, PR China.

³ China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, No.24 Tongjiaxiang Road, Nanjing 210009, PR China.

*Corresponding authors: dibin@cpu.edu.cn; chihu@cpu.edu.cn

5F-EMB-PICA

4F-MDMB-BUTICA

5F-MDMB-PICA

MDMB-4en-PINACA

ADB-BUTINACA

ADB-4en-PINACA

AMB-FUBINACA

4CN-CUMYL-BUTINACA

Fig. S1. The structures of nine synthetic cannabinoids.

Fig. S2. (a) Digital photographs of $Fe_3O_4@PDA@poly(DVB-co-NVP)$ MNPs dispersion in ethanol for ten days. (b) Dynamic light scattering (DLS) of $Fe_3O_4@PDA@poly(DVB-co-NVP)$ MNPs in ethanol for ten days.

The mean hydrodynamic diameters for $Fe_3O_4@PDA@poly(DVB-co-NVP)$ MNPs dispersed in ethanol were 339 nm on day 0, 354 nm on day 5 and 329 nm on day 10, respectively. As the particle diameter and visual appearance exhibited negligible difference within ten days, the synthesized nanoadsorbents are supposed to be stable during storage.

Fig. S3. XRD patterns of (a) Fe₃O₄ MNPs, (b) Fe₃O₄@PDA MNPs and (c) Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs.

The XRD patterns of Fe₃O₄, Fe₃O₄@PDA and Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs are shown in Fig. S3. Common peaks were observed at 18.1°, 30.2°, 35.6°, 36.2°, 43.4°, 53.8°, 57.2°, and 62.8°, which were assigned to (111), (220), (311), (222), (400), (422), (511), and (440) planes, confirming the cubic crystallinity of the magnetite Fe₃O₄ nanoparticle core compared with standard XRD peaks (JCPDS No.19-0629)[1]. Surface modifications with PDA did not result in phase change of the Fe₃O₄ particles[2,3]. However, the XRD peaks of Fe₃O₄@PDA@poly(DVB-co-NVP) were broader and lower compared with those of Fe₃O₄@PDA. This phenomenon is likely because the additional poly(DVB-co-NVP) coating on the surface reduce and cover up the intensities of the corresponding peaks[4]. It can be concluded that the magnetic particles were successfully fabricated.

Fig. S4. (a) magnetization curves of Fe₃O₄ MNPs and Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs. (b) Magnetic separation of Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs.

Fig. S4(a) shows the magnetic properties of Fe₃O₄ MNPs and Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs measured by VSM at a temperature of 300K. The practical saturation magnetization of Fe₃O₄ MNPs and Fe₃O₄@PDA@poly(DVB-co-NVP) is calculated at 56.33 and 37.38 emu/g. From the data, it can be seen that after coating and fabrication of Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs, the actual saturation magnetization showed a tendency of decrease. Though Fe₃O₄@PDA@poly(DVB-co-NVP) MNPs exhibited a compromised magnetism compared to Fe₃O₄, both of them could be readily separated from solution by applying a magnet as shown in Fig. S4(b), supporting their application as MSPE adsorbents.

Samples	MDMB-	4CN-CUMYL-	5F-MDMB-	MDMB-4en-	ADB-4en-	5F-EMB-	AMB-	ADB-	4F-MDMB-
	FUBICA	BUTINACA	PICA	PINACA	PINACA	PICA	FUBINACA	BUTINACA	BUTICA
S1	-	-	-	-	-	-	-	-	-
S2	-	-	-	-	-	-	-	-	-
83	-	-	-	-	-	-	-	-	-
S4	-	-	-	-	-	-	-	-	-
\$5	-	0.15	-	-	-	-	-	-	-
S 6	-	-	-	-	-	-	-	-	-
S7	-	-	-	-	-	-	-	-	-
S 8	-	-	-	-	-	-	-	-	-
S 9	-	0.11	-	-	-	-	-	-	-
S10	-	<loq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<>	-	-	-	-	-	-	-
S11	-	-	<loq< td=""><td><loq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<>	-	-	-	-	-
S12	-	-	<loq< td=""><td><loq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<></td></loq<>	<loq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></loq<>	-	-	-	-	-

 Table S1. Real sample analysis

References

- B.Y. Yu, S.-Y. Kwak, Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure, Journal of Materials Chemistry 20 (2010) 8320. https://doi.org/10.1039/c0jm01274b.
- [2] F. Zafar, H. Wang, C. Lv, M.-H. Ullah, C. Liu, Y. Hua, L. Mei, J. Huang, Enhancement of GAD storage stability with immobilization on PDA-coated superparamagnetic magnetite nanoparticles, Catalysts 9 (2019) 969. https://doi.org/10.3390/catal9110969.
- [3] H. Veisi, F. Parvizi, M.R. Abdi, Magnetic solid-phase extraction and uv/vis spectrophotometric determination of trace amount of copper in vegetable and fruit samples after preconcentration of its pentetate complex, Journal of Nanoanalysis 5 (2018). https://doi.org/10.22034/jna.2018.543609.
- [4] B. Zhao, S. Li, X. Liao, J. Li, W. Ma, Y. Dong, X. Zhou, Y. Liu, Synthesis and properties of magnetic self-healing polymers: An effective method for improving interface compatibility of doped functional polymers, ChemNanoMat 5 (2019) 642–650. https://doi.org/10.1002/cnma.201800670.