Supporting information

for

Turn-on detection of Al³⁺ ion by quinoline based tripodal probe: Mechanistic investigation and live cells imaging applications

Nidhi Goswami^a, Sudhanshu Naithani^a, Tapas Goswami^a, Pankaj Kumar^{a*}, Pramod Kumar^{b*}, Sushil Kumar^{a*}

^a Department of Chemistry, Applied Science Cluster, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India. Email: <u>sushil.k@ddn.upes.ac.in</u>

^b Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India. Email: <u>baliyanpk@gmail.com</u>

Fig. S1. ¹H NMR spectrum of **TQSB** in CDCl₃ at room temperature.

Fig. S2. ¹³C NMR spectrum of TQSB in CDCl₃ at room temperature.

Fig. S3. ESI-MS analysis of TQSB in methanol at room temperature.

Fig. S4. UV-Vis and emission spectra for (a) **TQSB** and (b) **TQSB**-Al³⁺ in acetonitrile solutions along with their Stokes shift values.

Fig. S5. Benesi-Hildebrand plot for determination of binding constant.

Fig. S6. Effect of pH on probe TQSB and TQSB-Al³⁺ complex.

Fig. S7. Response time of probe **TQSB** with Al^{3+} ions.

Fig. S8. ESI-MS analysis of TQSB-Al³⁺ in methanol at room temperature.

Fig. S9. ¹H NMR analysis of probe TQSB in absence and presence of Al^{3+} at room temperature.

Table S1. Optimized bond distances obtained from DFT calculations.

	Bond length (Å)
Al-N11	2.15927
Al-N12	2.04614
Al-N21	2.15956
A1-N22	2.04639
Al-N31	2.15962
A1-N32	2.04638

Table S2. Fluorescence quantum yield values and HOMO/LUMO energies of **TQSB** and **TQSB**-Al³⁺.

	TQSB	TQSB-Al ³⁺
Quantum yield	0.058	0.464
HOMO (E1)	(-) 5.4017 eV	(-) 13.7156 eV
LUMO (E2)	(-) 1.9662 eV	(-) 11.3969 eV
ΔE (E1-E2)	3.4355 eV	2.3187 eV

Fig. S10. The electrostatic potential (ESP) of **TQSB** (-0.08743 to + 0.08743) and **TQSB**-Al³⁺ (-3.277 to + 3.277).

Fig. S11. Fluorescence intensity of **TQSB** at 414 nm upon alternate addition of a varied amount of Al^{3+} and EDTA ions.

Fig. S12. Fluorogenic and chromogenic changes in **TQSB** upon addition of various metal ions (λ_{ex} = 310 nm) (a₁-a₂) on paper strips and (b₁-b₂) in CH₃CN-H₂O solution under visible and UV light, respectively.

Fig. S13. (a) MTT assay of TQSB on MCF-7 cells lines and (b) IC_{50} dose of probe TQSB in MCF-7 cells was depicted as 27.96 μ M.

Fig. S14. Confocal imaging of human breast cancer MCF-7 cell lines incubated with variable concentrations (20-60 μ M) of TQSB.

S.N.	Probe	Target ions	LoD (µM)	Application	Ref.
1.		Al ³⁺	0.9	Bore water, drinking water, tap water, BSA, Live cell imaging	[1]
2.		Al ³⁺ , Fe ³⁺	0.0122 0.104	Tap water, bottled water	[2]
3.		Al ³⁺ , ClO ⁻	0.0298 0.025	Real water samples and Live cell imaging	[3]
4.		Al ³⁺ , Zn ²⁺	0.097 0.21	Real water samples	[4]

Table. S3. Comparison of sensing parameters of probe **TQSB** with some previously reported probes.

5.	N N CI	Al ³⁺	1.25	Bioimaging in living cells, plants and zebrafish	[5]
6.		Al ³⁺ , HSO ₃ -	0.0021 0.0023	Drinking water and food samples	[6]
7.		Al ³⁺	0.0158	Test paper strips	[7]
8.		Al ³⁺	0.0235	Cell imaging	[8]
9.		Al ³⁺	3.67 × 10 ⁻²	Cell imaging	[9]
10.		Al ³⁺	0.01	-	[10]
11.	N N OH	Al ³⁺	2.14 ×10 ⁻²	Real water samples	[11]
12.		Al ³⁺	0.007	Live cell imaging, test paper strips, and digene tablet	This work

Table. S4. Detection of Al^{3+} in real samples.

Sample	Al ³⁺ spiked /	Al ³⁺ calculated (µM)	% Recovery
	Present (µM)		
Soil samples			
	0.4	0.38	95.0
	0.8	0.77	96.25
	1.0	1.04	104
Gastric Tablet			
	0.4	0.39	97.5
	0.8	0.82	102.5
	1.0	0.97	97

References

- 1. A. Kalavathi, P. Saravanakumar, K. Satheeshkumar, K. N. Vennila, and K. P.Elango, *J. Mol. Struct.*, 2023, **1289**, 135895.
- Y. Ding, C. Zhao, P. Zhang, Y. Chen, W. Song, G. Liu, Z. Liu, L. Yun and R. Han, J. Mol. Struct., 2021, 1231, 129965.
- 3. C.-L. Zhang, C. Liu, S.-r. Nie, X.-L. Li, Y.-m. Wang, Y. Zhang, J.-h. Guo, and Y.d. Sun, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2023, **300**, 122917.
- L.-L. Man, T.-L. Wang, K. Liu, X. Hou, Z.-X. Wang, L. Tong, and W.-K. Dong, J. Mol. Struct., 2024, 1303, 137586.
- 5. W. Lu, J. Chen, J. Shi, L. Xu, S. Yang, and B. Gao, J. Biol. Inorg. Chem., 2021, 26, 57-66.
- C. I. David, H. Jayaraj, G. Prabakaran, K. Velmurugan, D. P. Devi, R. Kayalvizhi, A. Abiram, V. R. Kannan, and R. Nandhakumar, *Food Chemistry*, 2022, 371, 131130.
- N. Goswami, S. Naithani, T. Goswami, P. Kumar, P. Kumar, and S. Kumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2024, 310, 123971.
- 8. P. Ghorai, K. Pal, P. Karmakar, and A. Saha, *Dalton Trans.*, 2020, 49(15), 4758-4773.
- S. Zeng, S. J. Li, X. J. Sun, M. Q. Li, Y. Q. Ma, Z. Y. Xing, and J. L. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 205, 276-286.
- 10. G. Bartwal, K. Aggarwal, J. M. Khurana, J. Photochem. Photobiol. A, 2020, 394, 112492.
- 11. H. Peng, X. Peng, J. Huang, A. Huang, S. Xu, J. Zhou, and X. Cai, *J. Molecular Struct.*, 2020, **1212**, 128138.