SUPPLEMENTARY INFORMATION

Colorimetric differentiation of arsenite and arsenate anions using bithiophene sensor with two binding sites: DFT studies and application in food and water samples

Nagaraj K^{a,b}, A. Nityananda Shetty^a, Darshak R. Trivedi^{b*}

a= Material Science Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar - 575 025, Karnataka, India

b=Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar - 575 025, Karnataka, India

*Email: darshak_rtrivedi@yahoo.co.in, darshakrtrivedi@nitk.edu.in, Phone No: +91-824-2473205, fax: +91 824 2474033 (Darshak R Trivedi)

Table of contents

S1. Materials and methods

S2. Synthesis and characterization of chemosensor N7R1

S3. Binding constant calculation

S4. Limit of detection (LOD) calculation

Fig. S1 FT-IR spectrum of chemosensor N7R1

Fig. S2 ¹H NMR spectrum of chemosensor N7R1

Fig. S3 ¹³C NMR spectrum of chemosensor N7R1

Fig. S4 LC-MS spectrum of chemosensor N7R1

Fig. S5 Color changes of chemosensor N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of anions SCN⁻, S²⁻, P₂O₇⁴⁻, N₃⁻, and SO₃²⁻ (1×10^{-2} M in water).

Fig. S6 UV-Vis absorption spectra of chemosensor N7R1 in DMSO/H₂O (9:1, v/v) in the presence of 2 equivalences of different anions.

Fig. S7 Color changes of chemosensor N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of various metal ions (1×10^{-2} M in water).

Fig. S8 Absorption intensity of N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of arsenite ions (1×10^{-2} M in water) in various intervals of time.

Fig. S9 UV-Vis spectral response of (a) N7R1 and N7R1+ AsO_2^- and (b) N7R1 and N7R1+ AsO_4^{3-} in various percentages of water content in DMSO.

Fig. S10 Color changes of chemosensor N7R1 (1×10^{-5} M) in DMSO/H₂O (7:3, v/v) on adding two equivalences of anions (1×10^{-2} M in water).

Fig. S11 Effects of absorbance in the presence of 3 equiv. of different anions in DMSO/H₂O (7:3, v/v) solution of N7R1 (2×10^{-5} M) Black bar: N7R1 + AsO₂⁻ ion, Blue bar: N7R1 + AsO₂⁻⁺ competing anions.

Fig. S12 B-H plot for N7R1–AsO₂⁻ complex in DMSO/H₂O (9:1, v/v).

Fig. S13 B-H plot for N7R1–AsO₄^{3–} complex in DMSO/H₂O (9:1, v/v).

Fig. S14 B-H plot for N7R1–AsO₂⁻ complex in DMSO/H₂O (7:3, v/v).

Fig. S15 Calibration curve for N7R1–AsO₂⁻ complex in DMSO/H₂O (9:1, v/v)

Fig. S16 Calibration curve for N7R1– AsO₄^{3–} complex in DMSO/H₂O (9:1, v/v)

Fig. S17 Calibration curve for N7R1–AsO₂⁻ complex in DMSO/H₂O (7:3, v/v).

Fig. S18 LC- MS spectrum of N7R1- AsO₂⁻ complex in negative mode.

Fig. S19 A linear calibration plot of N7R1–AsO₂⁻ vs. the amount of AsO₂⁻ ions for the quantitative analysis of milk, honey and water samples.

S1. Materials and methods

The chemicals, anions, and solvents used in the study were procured from Sigma-Aldrich and TCI and used without further purification. ¹H NMR and ¹³C NMR spectra of the synthesized chemosensor were recorded using JEOL (400 MHz) NMR spectrometer. Infrared spectrum was recorded on Bruker- alpha FT-IR spectrometer with a resolution of 4 cm⁻¹. UV-Vis spectral studies were performed using Analytikjena Specord S600 spectrometer in a 3.5 mL glass cuvette with a path length of 1 cm. The cyclic voltammograms were recorded on an Ivium electrochemical workstation with a scan rate of 20 mV/s and a potential range of –1.5 to +1.5 V. Mass spectrum of the chemosensor was recorded using Xevo QToF, Waters mass spectrometer. The melting point of the synthesized product was recorded using Stuart-SMP3 melting point apparatus.

S2. Synthesis and characterization of chemosensor N7R1

Synthesis of chemosensor N7R1 (4,4'-(((1E,1'E)-[2,2'-bithiophene]-5,5'diylbis(methanylylidene))bis(hydrazin-1-yl-2-ylidene))dibenzonitrile)

Chemosensor N7R1 was prepared using a Schiff base reaction between 2,2'-bithiophene 5,5'dicarboxaldehyde (200 mg, 0.899 mmol) and 4-cyanophenylhydrazine (305 mg, 1.799 mmol). Both were dissolved in 20 mL of ethanol. After adding 2–3 drops of glacial acetic acid, the mixture was refluxed for 3 h at 90 °C. The solid formed was filtrated and purified by ethanol wash. Yield: 86%, Melting point: 269 °C. FT-IR (ATR) (cm⁻¹): 3268.36 (N-H), 2204.55 (C=N), 1600.85 (C=N), ¹H NMR (DMSO-d₆, 400 MHz, Me₄Si): 11.074 (s, 2H), 8.130 (s, 2H), 7.660–7.640 (d, 4H), 7.376–7.372 (d, 2H), 7.309 (s, 2H), 7.111–7.091 (d, 4H). ¹³C NMR (DMSO-d₆, 100 MHz): 148.54, 139.83, 137.06, 135.40, 134.20, 130.05, 125.45, 120.54, 112.56, 100.00. Mass (LC-MS): m/z calculated for $C_{24}H_{16}N_6S_2$: 452.55 Obtained: 451.08 [M–H]⁺

S3. Binding constant calculation

The binding constants of the chemosensor with the particular anions were calculated from UV-Vis titrations. The fitting of the graph between the $1/(A-A_0)$ vs. $1/[Arsenite]^n$ provides the straight line, and using Benesi-Hildebrand (B-H) equation (Eq. 1), the binding constants can be calculated.

$$\frac{1}{A - A_0} = \frac{1}{A_{max} - A_0} + \frac{1}{K[I^-]^n (A_{max} - A_0)}$$
(Eq. 1)

where K is the binding constant, $[I^-]$ is the anion concentration, n is the stoichiometric ratio, and A is absorbance.

S4. Limit of detection (LOD) calculation

A linearity graph between absorbance and the concentration of anion was used to calculate LOD. The equation used is

$$LOD = \frac{3 \times \sigma}{S}$$
 (Eq. 2)

where S is the slope and σ is the standard deviation of the calibration curve.

Fig. S1 FT-IR spectrum of chemosensor N7R1.

Fig. S2 ¹H NMR spectrum of chemosensor N7R1.

Fig. S3 ¹³C NMR spectrum of chemosensor N7R1.

Fig. S4 LC-MS spectrum of chemosensor N7R1.

Fig. S5 Color changes of chemosensor N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of anions SCN⁻, S²⁻, P₂O₇⁴⁻, N₃⁻, and SO₃²⁻ (1×10^{-2} M in water).

Fig. S6 UV-Vis absorption spectra of chemosensor N7R1 in DMSO/H₂O (9:1, v/v) in the presence of 2 equivalences of different anions.

Fig. S7 Color changes of chemosensor N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of various metal ions (1×10^{-2} M in water).

Fig. S8 Absorption intensity of N7R1 (2×10^{-5} M) in DMSO/H₂O (9:1, v/v) on adding two equivalences of arsenite ions (1×10^{-2} M in water) in various intervals of time.

Fig. S9 UV-Vis spectral response of (a) N7R1 and N7R1+ AsO_2^- and (b) N7R1 and N7R1+ AsO_4^{3-} in various percentages of water content in DMSO.

Fig. S10 Color changes of chemosensor N7R1 (1×10^{-5} M) in DMSO/H₂O (7:3, v/v) on adding two equivalences of anions (1×10^{-2} M in water).

Fig. S11 Effects of absorbance in the presence of 3 equiv. of different anions in DMSO/H₂O (7:3, v/v) solution of N7R1 (2×10^{-5} M) Black bar: N7R1 + AsO₂⁻ ion, Blue bar: N7R1 + AsO₂⁻⁺ competing anions.

Fig. S12 B-H plot for N7R1–AsO₂⁻ complex in DMSO/H₂O (9:1, v/v).

Fig. S13 B-H plot for N7R1–AsO₄^{3–} complex in DMSO/H₂O (9:1, v/v).

Fig. S14 B-H plot for N7R1–AsO₂⁻ complex in DMSO/H₂O (7:3, v/v).

Fig. S15 Calibration curve for N7R1–AsO2⁻ complex in DMSO/H2O (9:1, v/v)

Fig. S16 Calibration curve for N7R1– AsO_4^{3-} complex in DMSO/H₂O (9:1, v/v)

Fig. S17 Calibration curve for N7R1–AsO₂⁻ complex in DMSO/H₂O (7:3, v/v).

Fig. S18 LC- MS spectrum of N7R1- AsO₂- complex in negative mode.

Fig. S19 A linear calibration plot of N7R1–AsO₂⁻ vs. the amount of AsO_2^- ions for the quantitative analysis of milk, honey and water samples.