Microfluidic Platform for the Enzymatic Pretreatment of Human Serum for the Detection of the Tuberculosis Biomarker Mannose-Capped Lipoarabinomannan

Christopher J. Lambert^{1*}, Eamonn Clarke^{2†}, Dhruv Patel^{1†}, Lars B. Laurentius³, Bruce K. Gale¹, Himanshu J. Sant^{1†}, Marc D. Porter^{2,4‡} Departments of Mechanical Engineering¹, Chemistry², Electrical and Computer Engineering³ and Chemical Engineering⁴, University of Utah, Salt Lake City, UT, USA 84112 *Present address: Colossal Biosciences, Austin, TX, USA 78701 [†]Present address: Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA 84112 [‡]Author to whom correspondence should be addressed

Table of Contents

ELISA for ManLAM	1
Bill of Materials	2
ECPMD Principle of Operation	3
Performance Comparison	3
Calibration Curve for Determination of ManLAM Concentration	4
References	4

ELISA for ManLAM

Our ELISA for ManLAM has been reported previously.^{1,2} The assay is a sandwich-type ELISA utilizing a polyclonal rabbit antibody to *Mycobacterium tuberculosis* purified protein derivative (Virostat #4601) as a capture antibody and a biotinylated human monoclonal antibody to ManLAM (A-194-01³) as the label. This assay exhibits good performance with a limit of detection consistently near 10 pg/mL for ManLAM in an innocuous buffered matrix (MPBS+BSA, see below).

Materials, Reagents, and Equipment

BupHTM modified Dulbecco's PBS packs (MPBS), StartingBlockTM PBS blocking buffer, and 1-StepTM Ultra TMB-ELISA (TMB) were from Thermo Scientific. Tween[®] 20 was from Fisher Scientific. Bovine serum albumin (BSA) and sulfuric acid were from Sigma-Aldrich. Streptavidin-conjugated horseradish peroxidase (STV-HRP) was from R&D Systems. A-194-01 antibody was generously provided by Dr. Abraham Pinter (Rutgers University) and biotinylated in-house as described elsewhere.² COSTAR 3590 high-binding polystyrene 96-well plates were from Corning Incorporated.

MPBS was reconstituted with ultrapure water per package directions. MPBS with 0.05% v/v Tween[®] 20 was used as washing buffer for the ELISA and is referred to as MPBST. MPBS with 1% w/v bovine serum albumin was used as a diluent for ManLAM standards, label antibody, and STV-HRP, and is referred to as MPBS+BSA.

Labnet Vortemp incubators were used to incubate the plates during the assay. A BioTek Multiflo FX microplate washer was used for plate washing steps and a BioTek ELx800 microplate reader was used to measure the absorbance in each well.

Assay protocol

- 1. Incubate plate with 100 μ L/well capture antibody (10 μ g/mL in MPBS) overnight at 4 °C.
- 2. Equilibrate plate in incubator for 30 min (30 °C, 250 rpm; these conditions used for all subsequent incubations).
- 3. Wash plate $3 \times$ with 300 µL/well MPBST (422 µL/sec dispense rate; these conditions used for all subsequent washes).
- 4. Incubate plate 1 h with 200 μ L/well StartingBlockTM.
- 5. Wash plate.
- 6. Incubate plate 2 h with 100 μ L/well sample.
- 7. Wash plate.
- Incubate plate 2 h with 100 μL/well biotinylated label antibody (200 ng/mL in MPBS+BSA).
- 9. Wash plate.
- 10. Incubate plate 25 min with STV-HRP (diluted 1:200 from stock in MBPS+BSA).
- 11. Wash plate.
- 12. Incubate plate 30 min with 100 μ L/well TMB.
- 13. Add 50 μ L/well 2 N sulfuric acid.
- 14. Read absorbance.

Absorbance of the TMB substrate is measured at 450 nm and a background reading at 630 nm is subtracted to account for well-to-well variations in the microplate. The limit of detection is calculated as the average absorbance of the blank plus three times its standard deviation,^{4,5} which is converted to a ManLAM concentration by interpolation on a linear least squares fit to the calibration data. All samples are run in triplicate. Comparisons between samples run on separate plates are made by referencing to the calibration standards run on each plate.

Material	Vendor	Catalog number
Aluminum plates, type 6061	McMaster-Carr	8975K513
PMMA sheet, 1/4 in	McMaster-Carr	8560K355
Sylgard 184 PDMS kit	Ellsworth Adhesives	184 SIL ELAST KIT 3.9KG
PMMA sheet, 1 mm	Uxcell	a19123000ux0199
Silicone membrane, 240 µm	Rogers Corporation	BISCO-HT-6210
Silicone rubber insulation	Home Depot	304267928
Thermocouple	Omega Engineering, Inc.	SA1-J
Ceramic cartridge heater tatoko	Amazon	B07Q5R7GV6
502		
Tygon tubing, 0.060" O.D. \times	Saint Gobain Performance	AAD04103
0.020" I.D.	Plastics	(Fisher Scientific 15670211)
PID controller	Omega Engineering, Inc.	CN4216-R1-R2
MH1 valve manifold	Festo USA	197334
Programmable logic controller	WAGO USA	750-881
Silicone adhesive 1	Adhesive Research	ARclad IS-8026
Silicone adhesive 2	FLEXcon	SA6104 LR
Loctite 34931 light cure adhesive	Amazon	B005TPGT4M
J-B Weld Original 2-part epoxy	Amazon	B0B5VNG2YT

Bill of Materials

ECPMD Principle of Operation

Figure S-1. Operation of the membrane-controlled fluid chambers. When positive pressure is applied to the control layer, the membrane flexes up, closing the chamber and expelling its contents. When vacuum is applied to the control layer, the membrane flexes down, opening the chamber and taking in liquid from any connected chamber or reservoir.

Performance Comparison

Table S-1. Raw data and paired t-test calculations for the comparison of ManLAM ELISA dose response between on-chip and on-bench sample pretreatment (accompanying **Figure 3A**).

[ManLAM]	Signal from on-chip	Signal from on-bench	<u>Difference</u>
<u>(pg/mL)</u>	pretreatment (A.U.)	pretreatment (A.U.)	<u>(chip-bench)</u>
0	0.060	0.045	0.015
10.	0.080	0.075	0.005
50.	0.225	0.204	0.021
100.	0.411	0.402	0.009
500.	2.055	1.834	0.221
		Mean difference	0.054
		Standard deviation	0.093
		t _{calculated}	1.301
		t _{table}	2.776

Table S-2. Raw data and paired t-test calculations for the comparison of determined ManLAM concentrations following pretreatment of blinded samples on bench and on chip.

<u>Spiked</u>	[ManLAM]	[ManLAM]	<u>Difference</u>		
[ManLAM]	<u>determined</u>	determined following	<u>(chip-bench)</u>		
<u>(pg/mL)</u>	<u>following on-chip</u>	<u>on-bench</u>			
	<u>pretreatment</u>	<u>pretreatment (pg/mL)</u>			
	<u>(pg/mL)</u>				
0	0	0	0		
25.	29	24	-6		
75.	75	89	17		
300.	279	355	88		
		Mean difference	25		
		Standard deviation	43		
		t _{calculated}	1.157		
		t _{table}	3.182		

Calibration Curve for Determination of ManLAM Concentration

Figure S-2. Calibration curve for ManLAM ELISA used to determine the concentration of ManLAM in the blinded samples. The samples for this curve were prepared in MPBS+BSA. Error bars representing the standard deviation of three replicates are on par with the size of the data points. The limit of detection for this calibration curve was 7 pg/mL.

References

- 1 N. A. Owens, C. C. Young, L. B. Laurentius, P. De, D. Chatterjee and M. D. Porter, *Anal. Chim. Acta*, 2019, **1046**, 140–147.
- 2 E. Clarke, R. Robinson, L. B. Laurentius and M. D. Porter, *Anal. Chem.*, 2023, **95**, 9191–9198.
- 3 A. G. Amin, P. De, J. S. Spencer, P. J. Brennan, J. Daum, B. G. Andre, M. Joe, Y. Bai, L. Laurentius, M. D. Porter, W. J. Honnen, A. Choudhary, T. L. Lowary, A. Pinter and D. Chatterjee, *Tuberculosis*, 2018, 111, 178–187.
- 4 D. C. Harris and C. A. Lucy, in *Quantitative Chemical Analysis*, W. H. Freeman, New York, NY, Ninth Ed., 2016, pp. 102–103.
- 5 D. A. Skoog, F. J. Holler and S. R. Crouch, in *Principles of Instrumental Analysis*, Brooks/Cole, Belmont, CA, Sixth Ed., 2007, p. 20.